
DTSD
Rev. 3.0

10/31/06

SPIRIT WIC Automation Project
DTSD Overview

Covansys Corp.
January 10, 2007

DTSD
Rev. 3.0

10/31/06

1 Purpose 1
2 Format and Content 1
3 Background 2
4 Project Scope 3
5 Architectural Overview 4
6 Development Approach 6
7 Tools & Technologies 7
8 Communications 8

8.1 Network Infrastructure 8
8.2 Software Protocols 9

9 Security 10
9.1 Authentication 10
9.2 Authorization 10
9.3 Security Component Architecture 11
9.4 Configuring Application Security 16

10 System Components 21
10.1 Session Management 22
10.2 Starting the Applications 22
10.3 Managing the Session 22
10.4 Applying Software Updates 23
10.5 Keeping Reference Data Synchronized 24
10.6 Processes vs. Applications 25
10.7 Packaging and Deployment Strategies 25
10.8 Storing the Data 43

11 Software Design Specifications 44
11.1 Software Modeling 44
11.2 Data Modeling 48

12 Design Patterns and Practices 48
12.1 User Interface Layer 48
12.2 Business Service Layer 53
12.3 Web Service Interface Layer 57
12.4 Web Service Agent Layer 59
12.5 Data Access Layer 62
12.6 XP Interface Compatibility 64
12.7 Reporting Component Architecture 65
12.8 Dictionary Lists 72
12.9 Growth Grids and CDC Data 73
12.10 Consignment of System-wide Identifiers 74
12.11 CYNS.BPDS.Security.CryptographicProvider 77
12.12 Central Data Store 78
12.13 Local Data Store.. 78
12.14 Service Agents.. 78
12.15 Permission Testing 78
12.16 Implementing Business Rules Checks 79
12.17 Exception Handling 79
12.18 Summary Lists 79
12.19 Building "Persistable" Objects 80
12.20 Using Duncan to Generate "Persistable" Objects 80
12.21 Business Object Yalidation and Broken Rules 80
12.22 Using Database Transactions 81
12.23 Resources 81

DTSD
Rev. 3.0

10/3 l/06

12.24 Messages 82
12.25 Unit Testing 82
12.26 Coding Guidelines 82
12.27 Version Control 82
12.28 Code Documentation 82

13 Disaster Recovery Provisions 83
14 Appendix A 85

DTSD
Rev. 3.0

10/31/06

1 Purpose
The purpose of the DTSD is to provide detailed information regarding the tools, technologies, and
technical design specifications that are being used to construct the WIC automation system for the
SPIRIT consortium.

As eluded to in the RFP this is a "living" document. It is to be kept up-to-date and should
document the technical details of the project.

2 Format and Content
The DTSD documentation is comprised of the following artifacts:

. DSTD Gover document (This document)

. Detailed Design Addendum documents

. Software Model

. Data Model

. Disaster Recovery Plan

This document provides a detailed description of the system architecture and provides a road map
into the associated Software Model and Data Model documentation provided on CD, each being a
component of the overall DTSD. The software model and data model documentation is being
provided in HTML format. Using the HTML format allows for streamlined publication and
distribution of the information while also allowing the design to hyperlink related information
facilitating ease of use.

The DTSD documents are provided in addition to the DFDD. There purpose is to document how
the software described in the DFDD is to be constructed. After reading this overview document
the reader should be familiar with the architecture being used, the major components and their
collaborations and the modeling techniques being applied that provide the detailed information
required to construct the software.

After reading a specific chapter of the DFDD, the corresponding detailed design addendum is
used to gain an understanding of the software components that related to the interfaces and
processes described in the DFDD. The addendum lists the packages and interfaces resources to be
constructed and provides a list of sequence diagrams that are used by the developer to understand
the runtime object collaborations and responsibilities that must be coded. All of the
aforementioned items are located in the Software Model documentation provided on the CD.

Each sequence diagram cites specific objects and messages that are to be exchanged. The
semantics of these collaborations are expressed as needed in each class specification and can be
easily accessed by double-clicking on the appropriate class in the sequence diagram. Each
package in the Software Model also contains one or more communication diagrams that are used
to depict the navigation between interfaces.

The Software Model is organized into a number of views. The Use Case View, Dynamic View,
Logical View, Component View, Deployment View, and Custom View.

Covansys Corp. SPIRIT

DTSD
Rev. 3.0

10/31/06

The Use Case View is not being used as of yet since the majority of the functionality that would
be expressed as use cases is already documented in the behaviors and processes described in the
DFDD. The Dynamic View is used to document business process and data flows. These are
provided in the form of Activity diagrams. The Logical View is used to document the data model.
The current data model is actually maintained in PowerDesigner and is imported into Enterprise
Architect tool for referential reasons. (Note: The team is currently evaluating the possibility of
maintaining the data model using Enterprise Architect and discontinuing the use of
PowerDesigner.) The Component View contains all of the communication diagrams, sequence
diagrams, and class specifications organized into their appropriate packages. The Deployment
View documents the software dependencies and deployment strategies. The Custom View is not
in use at this time.

The Data Model is provided on the CD. The model contains the ERD and associated table
specifications.

Further details in regard to the content and purpose of the Software Model and Data Model can be
found in the Software Specifications section of this document.

3 Background
The WIC system is collection of applications that provide functionality that enables a state to
provide benefits to participants in the federally funded WIC program. (Women, Infants, and
Children) The WIC program provides benefits in the form of food instruments (checks and/or
vouchers) and nutrition education to families that qualify to participate in the program. The WIC
system is grouped into 4 major functional areas; Participant Management, Vendor Management,
Financial Management, and System Administration.

Participant Management
Individuals apply for participation via the applicant prescreening process. The prescreening
process assesses the applicant's risk factors and determines if the applicant needs fit within
the services being provided. If the applicant does not pass the prescreening process they are
placed on a waiting list until such a time that the services provided meet the needs of the
applicant. Once the applicant passes the prescreening process a more detailed certification
process is performed. Once the applicant is certified they are eligible to participate, (hence
the term Participant), in the WIC program until their certification period ends. (Basically this
means that they can receive program benefits.)

Vendor Management
Participants can receive benefits in the form of food instruments (checks and/or vouchers).
Food instruments are non-transferable, non-negotiable documents redeemable for specific
food stuffs at participating vendor locations. Locations wishing to participate as WIC
Vendors must apply and comply with specific regulations.

Financial Management
The Financial Management portion of the system allows the state to manage the systems
general ledger and rebate agreement information.

System Administration
Like any other system, administrative tasks like user maintenance and reference data updates
must be performed. In addition, regularly scheduled activities must be conducted in order to

Covansys Corp. 2 SPIRIT

DTSD
Rev. 3.0

10/31/06

keep the system up-to-date. Typically these activities are conducted at the end of each day, at
the end of each month.

End of day activities include, but are not limited to importing and exporting issuance data,
bank payment files, vendor survey data, and Food instrument data. This data is distributed to
the local state agency, the FDA, the CDC and the appropriate banking institutions. End of
month activities generate a number of statistical reports used by the local state agency, the
FDA, and the CDC to monitor different aspects ofthe program.

Ad hoc activities are also conducted on an as needed basis. These activities include, but are
not limited to Managing the State-Agency-Clinic hierarchy, Resource availability, Scheduling
Group Education and immunization sessions at local clinics, system database management.

Most WIC programs are administered within a state at 3 levels; the State, Agency, and Clinic. A
State has one or more Agencies covering mutually exclusive geographic regions within the state.
An Agency has one or more Clinics covering smaller mutually exclusive geographic areas with
the agency's region. The primary role of the Clinic is to enroll and provide services and benefits
to participants. Agencies are focused on managing vendor relationships. The State [office] is
primarily concerned with overall program administration.

The SPIRIT project is a consortium of 13 Indian Tribal Organizations (ITOs). These ITOs will
operate as 13 independent state agencies but will utilize a single data center. The data center will
be hosted by CNI, one ofthe 13 ITOs. Since each ITa is operating as an independent State
Agency the CNI data center will maintain 13 independent logical databases, one for each ITa.
Thirteen independent URLs will also be provided, again, one for each ITa, each URL being
directed to the ITOs specific database.

4 Project Scope
The scope ofthis project is to implement a WIC system for the SPIRIT Consortium as agreed
upon by SPIRIT and Covansys Corp. The requirements of this system are detailed in number of
project artifacts located the project repository. The project scope stipulates not only detailed
functional requirements but a number of specific high level technical requirements as well. In
addition, Covansys project management has also stipulated a number of technical requirements
focused on product reuse for future implementations. As example of some of the requirements are
listed below:

. Utilize Smart Client Technology where appropriate to provide feature rich desktop
applications that can be updated over the internet.

. Provide the ability for a clinic to "go off-line" for a period of time. Allowing the clinic to
check participant information in and out of the central data store. While data is checked
out it should treated as "read only" when accessed from the central data store.

. Windows XP Professional will be the desktop operating system.

. Update the overall look and feel of the application where possible leveraging the
Windows XP User Interface.

. Use a Service Oriented Architecture in order to provide a set of implementation agonistic
services that do not require a low level database connection. These services must be
secure and only accessible by users known to the SPIRIT IT domain.

. All software is to be written in VB.NET

. The central data store will be Microsoft SQLServer 2000 Enterprise Edition

. The local data store will be Microsoft SQL Server 2000 Standard Edition

Covansys Corp. 3 SPIRIT

DTSD
Rev. 3.0

10/31/06

5 Architectural Overview
The SPIRIT project uses a "Rich Client" application that leverages the application independent
connectivity ofthe World Wide Web (typically only leveraged by a thin client application) with
the processing power and localization benefits of a traditional thick client desktop application.
This combination resolves the concerns of insufficient thin client processing power and excessive
"round trips" as well as the client/server data access latency issues traditionally associated with a
thick client application. .NET Web Services are used to provide a Service Oriented Architecture
that communicates with a Central Data Repository while .NET Remoting is used the share
information that is exchanged between the various applications running on a client machine. (E.g.
user privileges)

Component-Based Development is used to create a set of re-usable software artifacts organized
into an n-tiered architecture. The various tiers are described in brief below.

VI Components address the visual needs of the application and provide interfaces to support
business process workflows. A rich client application was selected as the best fit for this project
given the requirements.

VI Process Components are used to manage the aforementioned user interface workflows. These
are somewhat similar to the "controller" in a "model-view-controller" architecture. This particular.
application implements basic non-modal and modal form management within processes in
conjunction with .NET Remoting for inter-process communication and workflow management.

Service Interfaces provide a "store front" that can be used as the focal point for the service
oriented architecture. These services provide a layer of abstraction over the business workflows,
components, and entities described below.

Business Workflows are used to aggregate a number of business components and interrelated
business rules into a logical sequence of events, activities, and/or tasks.

Business Components are used to aggregate a number of business entities into a set of discrete
logical transactions each contain pertinent business logic relative to the logic transaction.

Business Entities normally are normally the smallest atomic unit in the solution and typically
represent a data attributes aggregated in objects. These objects typically represent a row or
collection of rows from a table or view from a data source or an [abstract] object returned from a
service invocation.

Data Access Logic Components & Data Services are treated as separate tiers in the
architecture, (see diagram below), but are best explained together. The data access logic is
typically a set of objects used to exchange data attributes between the client and the central data
store. These objects are horizontal in nature and do not have any business context, rather they are
set of "generic components" that can be targeted at one or more data sources. Data sources are
typically databases or files containing information utilized by the client. The SPIRIT project

Service Agents & Services as well are separate tiers in the architecture but are best described
together. Service agents provide the client-side wrapper around consumable services. Services are
"published" for consumption either internally, externally, or both. Note the services do not need

Covansys Corp. 4 SPIRIT

DTSD
Rev. 3.0

10/31/06

service agents in order to be published. This project leverages stateless .NET Web Services that
are consumed by the various client applications via service agents. These service agents are
capable of routing requests to either the corresponding remote service located at the central data
store or to a local data store via the appropriate components trom the service interface layer of the
architecture. This dynamic runtime routing is based the online or offline state of the applications.
In this vein it is evident that the service interfaces published within the context of this application
can be considered as external services that can be consumed by other authorized parties.

Communication between the various client applications within a session is achieved using .NET
Remoting where appropriate. Communication between the data sources is achieved using a
Service Oriented Architecture (SOA). Using an SOA allows the data service to dynamically route
the request to the appropriate data source. Service requests routed to remotely located Web
Services are expressed as XML and communicated using HTTPS (Secured Hyper Text Transport
Protocol). Service requests being routed to local data stores are left in their native business object
constructs.

Security with regard to communications is achieved by using SSL to encrypt the XML service
payloads being exchanged. Application security is controlled by a specialized application
authentication and authorization model that leverages a database driven user profile and role-
based privilege model to control access to various application features. Customized credentials
are used to exchange tokenized authentication during service invocations.

Software updates are automatically identified at the start of each application session by using a
combination of software manifest files and delta database change logic. These updates are then
downloaded by the client using practices described in Microsoft's Smart Client Architecture
Guide.

8 Users

Figure I -Microsoft's recommended n-tier architecture

Covansys Corp. 5 SPIRIT

DTSD
Rev. 3.0

10/31/06

As eluded earlier, this project re-uses the specific components from the tiered architecture on both
the Service and Client sides of the solution. This re-use optimizes the development effort and
assures that the online and offline behaviors are the consistent.

8 Users

Service Agents

SERVICE STORE FRONT

Figure 2 -SPIRIT Project logical components deployment

6 Development Approach
The overall approach is to use the artifacts from the Washington DC WIC project as a basis for
the SPIRIT project. This approach dictates a number of steps:

Covansys Corp. 6 SPIRIT

DTSD
Rev. 3.0

10/31/06

. Publish the DFDD (Detailed Functional Design Document) by using the DC WIC DFDD
as a baseline, adding in the new functional requirements stipulated by SPIRIT.

. Build the user interface layouts in order to incorporate images of these interfaces in the
DFDD.

. Reuse as much of the existing DCWIC software artifacts as possible. Since the DC WIC
software is written using VB6 in a somewhat non-object oriented fashion and interacts
with an Oracle database, reuse will be limited and primarily focused on reports.

. Design and implement an n-tier object oriented architecture using Microsoft Web
Services as the primary trust boundary between the central data store and consumer
(client) applications.

. Optimize the construction effort by providing detailed design packets to construction
teams for implementation. Packets will be organized into small focused initiatives
allowing for RAD style cyclical development organized in to distinct phases with an
emphasis on quality and quick turnaround.

. Utilize the Covansys global network to allow all project team members to access the
project artifact repository as needed.

. Use Subversion as the artifact repository.

. Focus development efforts on creating reusable design patterns and frameworks that will
provide for a consistent implementation, reduce redundant and repetitive coding tasks,
and increase overall quality by creating a bottom up approach for detecting defects.

7 Tools & Technologies
The following tools and technologies are being used to build the system.

Microsoft Visual Studio 2003 is the IDE (Interactive Development Environment) being used to
construct the software.

.NET Framework 1.1 Service Pack 2 is the underlying set of windows components being used
to interact with the features and functionality of the operating system.

VB.NET is the programming language being used to "write the code".

The Infragistics NetAdvantage 2004 Volume 2 toolkit is Third-party commercial product
purchased from Infragistics that provides a number of user interface controls being used in the
software.

Crystal Reports 8.5 from Crystal Decisions is being used to design and modifYreports. The
older version is being used in order maintain compatibility with other existing reports since the
latest version of Crystal Reports is not backward compatible.

The CVNS.BPDS.DataAccess Framework is a software library developed by the Covansys that
encapsulates the data access logic needed to interact with the underlying databases. It provides an
Object Oriented interface that reduces the need to write dynamic SQL to perform the basic
CRUD operations (Create, Read, Update, Delete).

The CVNS.BPDS Windows Framework is a software library developed by the Covansys that
provides a number of reusable utilities and classes applicable when displaying user interface
components

Covansys Corp. 7 SPIRIT

DTSD
Rev. 3.0

10/31/06

The Enterprise Architect modeling tool from Sparx Systems is being used to document the
detailed technical design of the software. The tool is being used to provide the Deployment,
Sequence, and Class diagrams as well as the Class specifications needed.

Power Designer from Sybase is being used to document the data model. (Note that the team is
currently evaluating replacing the use of PowerDesigner with Enterprise Architect.)

CTIMS is an Issue Tracking tool developed by Covansys and is being used to track the design
clarifications and defect resolution.

8 Communications
For the purposes of this document, communications can be categorized as the network
infrastructure needed to support the system and the software protocols that are being used on the
aforementioned network.

8.1 Network Infrastructure
The network being used to support the system is comprised of web servers, database servers, and
an application server all being protected by a series of firewalls. As depicted in the diagram
below, a router will be used to direct inbound traffic to the lIS Web Server cluster. The cluster
will then interact with the database servers by passing through a secondary firewall, essentially
creating a DMZ around the web server cluster. The database servers will be configured as an
"active/passive" SQL Server cluster, meaning that one server will handle all database requests
and the secondary server will provide failover support. In the event of a failover current database
transactions will not be completed by the secondary server and must be restarted by the
requesting client. The SQL Server cluster will be attached to a SAN. End of Day and End of
Month processing will be performed on the EOD/EOM application server. The servers will be
managed by dual active directory servers.

The client software will use the Internet to access the lIS Web Server cluster. Each ITO will be
responsible for establishing and maintaining connectivity to the Internet for each of there
computers, local area networks, and locations.

Covansys Corp. 8 SPIRIT

DTSD
Rev. 3.0

10/31/06

liS Web Cluster with

Network Load Balancing

MSSQL
Active-Passive
Server Cluster

Figure 3 -Network Infrastructure

8.2 Software Protocols
All Communications with the CNI data center with regard to the SPIRIT WIC systems will be
performed using the HTTPS (Secured Hyper text transport Protocol) Protocol using SSL (Secure
Socket Layer) and certificates purchased from accredited independent third party groups whose
certificates will be trusted sources by default within the Internet Explorer web browser. All
HTTPS traffic will be directed to the liS Web Server Cluster.

Covansys Corp. 9 SPIRIT

DTSD
Rev. 3.0

10/31/06

9 Security
The physical security of the data center falls under the direction and control of the CNI
organization. It is recommended by Covansys that only authorized CNI personnel familiar with
the hardware and network requirements of the SPIRIT WIC system be granted access the
hardware being used to support the SPIRIT WIC system.

Application security will be controlled by the software. Application security, when broken down
into its most basic parts, is defined by authentication and authorization. Authentication is making
sure someone is who they say they are. Authorization is making sure users can only perform an
action for which they are authorized. Between these two parts, application security prevents
malicious users from accessing applications or their data at all and triendly users trom mistakenly
trying to perform actions they shouldn't from wjthin the applications.

9.1 Authentication
Authentication is the process of controlling access to the system. The WIC software uses database
authentication to perform this task. Database authentication requires that each individual (user) is
included in the user profile within the database. The user profile contains the individual's user id
and password. (Note that the password is encrypted for security purposes). There are 2 distinct
authentication points within the system. The first is request authentication, the second is
application authentication.

Request authentication is performed during each request to the web server. The lIS Web Server is
configured to use a customized from of digest authentication (described later in the security
section). This configuration mechanism instructs lIS to pass the credentials supplied as part of the
http request to a custom application component that in turn uses the information contained in the
credentials to lookup the user and verify the information provided against the information in the
user profile. If the information matches, the custom application component accepts the credentials
and lIS proceeds to process the request. Ifthe credentials are not accepted lIS will reject the
request returning an HTTP error indicating the request we refused for security reasons.

Application authentication is performed client-side by the WIC session manager process. During
this process the user is prompted to supply their user id and password which is the submitted to
the server. Upon successful authentication with the server the WIC session manger will maintain
an "open session" on the client. This session contains the profile and privilege information used
by the various applications to perform authorization.

9.2 Authorization
Authorization is the process of ensuring the user has sufficient privileges to perform the requested
operation. Authorization in this context assumes that authentication has been successfully
performed. (See the Authentication section above.)

Role-based security is used to manage privileges. The details regarding setting up and managing
roles and privileges are documented in the DFDD. In short, roles have privileges where a
privilege is a combination of a feature and an access level. Features are associated to one or more
function points in the system. Users are assigned to locations, and at each location are designated
as having one or more roles thereby giving the user a set of privileges. Note that this set of
privileges is a "super-set" meaning that the highest privilege (access level that has been assigned
to each feature) across all the roles assigned to the user at that location is granted.

Covansys Corp. 10 SPIRIT

DTSD
Rev. 3.0

10/31/06

Authorization is accomplished by each application through the use of a set of permission test calls
provided by a UserProfile object maintained in the WIC session process (EXE) made available to
each application through the use of .NET Remoting.

9.3 Security Component Architecture
A brief overview of the security component architecture is necessary to effectively use the
security component and understand how to transfer existing code snippets to use the component.

9.3.1 Identities and Principals
The .NET Framework encapsulates authorization in its Identity and Principal objects and
interfaces. The functionality of the objects and interfaces can also be extended to meet more
specific needs, as is our case.

9.3.1.1 Identities

Identity objects encapsulate information about a user or entity. The .NET Framework provides an
identity interface (lldentity), a GenericIdentity class, and a WindowsIdentity class. The first two
are for building custom identity objects, while the latter is for supporting built-in Windows
authentication.

It would seem that we would want to use the GenericIdentity object as a base class to hold
information about our users. However, this object is not serializable, a feature we desire for cases
where the identity would be remoted. (This functionality is covered in the Single Sign-on section
later in the document.) Thus, we are left with creating our own identity class and implementing
the IIdentity interface - we extend this with the IUser interface to add functionality - so that our
object is treated the same as any other identity.

This is a representation of our identity class:

Covansys Corp. 11 SPIRIT

DTSD
Rev. 3.0

10/31/06

9.3.1.2 J>rinci)7als

Principal objects wrap Identity objects with further infonnation relating to the user and the
context they run the code in. As with Identities, the .NET Framework provides a principal
interface (IPrincipal), a GenericPrincipal class, and a WindowsPrincipal class. Again, the first
two are for building custom principal objects, while the latter exists to support Windows
authentication.

As is the case with Identities, it would seem that we would want to use the GeneralPrincipal
object, seeing as how we are not using Windows authentication. However, this object is also not
serializable. Therefore, we have created our own principal class that implements the IPrincipal
interface.

In addition to creating our own principal class that implements IPrincipal, we needed to extend
functionality to include pennissions checks and considered the Location a User was assigned to.
Thus, our principal class implementation, which we'll call a StaftMember, actually implements an
IStaftMember interface that extends the IPrincipal interface.

This is a representation of our principal class and its related interfaces:

Covansys Corp. 12 SPIRIT

cd User /
Ildentity

«interface»

IUser
,

+ "propefty» UserldO: Integer
+ "propefty» UserNarre(): String
+ "propefty» Password() : String

I,
I
I
I
I

BusinessObject

User

- mAuthenticationType: String- mAuthenticated: Boolean =False- mUsertD:Integer- mUserName: String- mPaS9Nord: String

+ «property» AuthenticationTypeQ : String
+ «property» lsA.uthenticated() : Boolean
+ «property» Name() : String
+ «property» UsertdO : Integer
+ «property» UserName(): String
+ «property» PaS9Nord() : String
+ New()- New(String, String)- SetAuthentication Type(Stri ng)
InitObjectQ
+ Verify()

DTSD
Rev. 3.0

10/31/06

9.3.2 Roles
Roles are simply logical groupings of permissions. Each Principal has a minimum of one role
associated with it. A diagram describing these relationships is shown below.

Covansys Corp. 13 SPIRIT

cd StaffMember J
System Security.Principal. IPrincipal I

«interface»

IIStaffMember

+ «property" Location(): ILocation
+ «property" Roles(): Roles I
+ HasPerrrission(AccessLevelTypeEnum FeatureTypeEnum): Boolean I
+ HasPerrrission(Perrrission) : Boolean
+ SetUser(IUser)
+ SetRoles(Roles)
+ SetL ocation(lLocation)

tt
I
I
I
I
I
I

BusinessObject
StaffMember

mlocation: Ilocation
mUser: IUser
mRoles: Roles

+ «property» UserO: System.Security.Principal.lldentity
+ «property» locationO : Ilocation
+ «property» Roles() : Roles
+ NewO- New(IUser)- New(IUser, Roles)- New(IUser, Roles. Ilocation)
+ IsinRole(String) : Boolean
+ HasPermission(AccessLevelTypeEnum, FeatureTypeEnum) : Boolean
+ HasPermission(Permission) : Boolean
+ Setlocati on (Ilocati on)
+ SetRoles(Roles)
+ SetUser(IUser)
InitObjectO
+ VerifyO

DTSD
Rev. 3.0

Covansys Corp. 14

10/31/06

SPIRIT

cd Roles)

BusinessObject
StaffMember

mLocation: ILocation
mUser. IUser
mRoles: Roles

+ «property» UserO: System.Security.Principal.lldentity I
+ «property» LocationO: ILocation
+ «property» Roles() : Roles
+ NewO- New(IUser)- New(IUser,Roles)- New(IUser, Roles, ILocation)
+ IsinRole(String) : Boolean
+ HasPermission(AccessleveITypeEnum, FeatureTypeEnum): Boolean
+ HasPermission(Permission) : Boolean
+ SetLocation(1 Location) I
+ SetRoles(Roles)
+ SetUser(IUser)
InitObjectO
+ VerifyO i

#mROles\V

BusinessObjectCollection

Roles

+ «property» Item(lnteger) : Role

+Jtem 1
1.. .

BusinessObject I
Role

- mRolelD: Integer- mName: String- mPermissions: Permissions

i
+ «property» RoleldO : Integer
+ «property» NameO : String I
+ «property» Permissions(): Permissions
+ NewO
+ New(String)

I

+ New(String, Permissions) I
+ HasPermission(Permission): Boolean I
+ HasPermission(AccessleveITypeEnum, FeatureTypeEnum): Boolean
InitObjectO
+ VerifyO

-mPermissions\ I

BusinessObjectCollection
Permissions

+ «property» Item(lnteger) : Permission

DTSD
Rev. 3.0

10/31/06

9.3.3 Permissions
Permissions are a logical representation of a feature to be performed and an access level to that
feature for a user. They are represented as follows:

cd Permission

BusinessObjectCollection

Permissions

+ «property» Item(lnteger) : Pennission

+Item

1,,*

BusinessObject

Permission

mPennissionlD: Integer
mAccesslevel: AccesslevelTypeEnum
mFeature: FeatureTypeEnum

+ «property» PennissionldO : Integer
+ «property» AccesslevelO : Integer
+ «property» FeatureO : Integer
+ NewO
+ New(AccessleveITypeEnum, FeatureTypeEnum)
+ Equals(Pennission): Boolean
InitObjectO
+ VerifyO

9.3.4 Access Levels
Access levels represent how much access a user has to a feature. They are broken down in an
enumerationintothe followingvalues:

. None - The user has no access to the feature.

. View - The user can view the feature.

. Add - The user can perform an "Add" action on the feature.
· Full - The user can perform all available actions on the feature.

Access levels are inclusive as more access is given to the user. For instance, a Full access level is
the same as having a View access level because it includes the View functionality, but a View is
not the same as having a Full because Full includes more functionality than just viewing.

Covansys Corp. 15 SPIRIT

DTSD
Rev. 3.0

10/31/06

9.3.5 Features
Features describe different parts of the application where permissions need to be applied. They
are also represented as an enumeration and have the following naming convention: <subject
area>_<feature name>. For example, a feature in the Vendor application that allows users to
perform actions on vendor applicants might be named Vendor_Applicant.

9.3.6 Single Sign-on
The idea of a single sign-on is that a user's permissions only have to be obtained one time for all
running applications. This is a performance optimization to save network bandwidth and latency.

This feature is implemented using a singleton object (Security) using .NET Remoting. Each
application makes sure the remoting listener is running before attempting to call the object. Upon
the first call to the object, all permissions for that user are obtained and held until the listener
application is shut down.

9.4 Configuring Application Security
To assist in understanding the described architecture, this section will walk through the steps of
configuring applications to run as described and explain how to implement the security features
from within the applications, applying permissions as specified. The Security.Prototype solution
has a project called SecurityExample that includes working copies of these examples.

9.4.1 Web Services
Starting from the back-end of the system, ASP.NET web services are hosted in lIS as a web
application. Thus, when setting up your web application that hosts web services, the
configuration steps that follow should be taken. The ASP.NET web application also requires
some configuration settings to be modified in the Web.Config file for the application.

This process is somewhat confusing in that we stated we are using Digest Authentication. In
reality, we are simulating Digest Authentication with a custom HttpModule. Thus, the suggested
settings look as if we're creating a wide-open system, when we are actually handling things
internally.

9.4.J.J lIS

To configure lIS open the Properties of the Web server and click on the Directory Security tab, as
shown below.

Covansys Corp. 16 SPIRIT

DTSD
Rev. 3.0

10/31/06

IV~rtual DirectorY

- , -
HTTP HeadefS II Custom Errors

"l1onymous access and authentication control

~
En
ut

a
h
b
entle~nat°.nym°et

us
h
a
d
cce

f
ss

t
an
h

' d editthe Ci ~a IC Ion m 0 s or ISresource. ~ £dit... 1..: -;.'-.-.....-.....

IP address and domain name restrictions

i Grant or den',> aCGe$,~ to this resource using
IP .:sddre.~se~or internet dorMin n.:smes,

Ed;i

Secure communications

Requiresecure communicationsand
enable client certificateswhen this
resource is accessed.

Eg.it

OK) [Cancel Help

Click on the Edit button to open the Authentication Methods dialog.

Covansys Corp. 17 SPIRIT

DTSD
Rev. 3.0

10/31/06

A~t~h~ll~icationM~th~d~ ~ -. - - -" [Rl

~ 8nonymous access

No user name/password requiredto access this resource.

Account used foranonymous access:

!.!. ser name:

fassword: I..........
~Allo~ liS to controlpassword

] [~rowse...

]

Authenticated access

For the following authentication methods, user name and password
are required when

. anonymous access is disabled, or

. access is restricted using NTFS access control fists

D Djgest authentication forWindows domainservers

D Ba§ic authentication (password is sent in clear text)

I [Select...

[\INS C:Jip.CU'ianp>",.c:o I [S~lect...

Default .Qomain:

flealm:

D Integrated Windows authentication

Cancel] [!:!elp

Make sure only the Anonymous check box is check, as shown above and press OK the save all
changes.

9.4.1.2 Web.Config

After lIS is configured, configure the ASP.NET web application's web.config file by setting the
application's authentication method to Windows.

<authentication mode="None" />

Then, make sure the application is denying access to unauthenticated (anonymous) users.

<deny users="?" />

Finally, add the HttpModule that will handle the customized digest authentication.

<httpModules>
<add name="AuthenticationModule"

type="Wic.Services.Security.AuthenticationModule,Wic.Servic
es" />
</httpModules>

9.4.2 Client Application
Now that the server is configured properly, the client needs to be set up.

Covansys Corp. 18 SPIRIT

DTSD
Rev. 3.0

10/31/06

9.4.2.1 App.Config

First, set up the application's app.config file to work with the .NET Remoting listener application.
(This listener application is the Security Listener and should be provided to you.) Setting this up
is a part of using the single sign-on feature of the system, which looks at the
SecurityService.Security object.

The file should look something like this:

<?xml version="l.O" encoding="utf-S" ?>
<configuration>

<system. runtime. remoting>
<application>

<client>

<wellknown

type="SecurityService.Security, SecurityService"
url="tcp://localhost:9999/Security.rem" />

</client>

</application>
</system. runtime. remoting>

</configuration>

It is likely that the port number and type information are not exactly as shown above, specific
information is provided in the appropriate packages and classes in the solution.

9.4.2.2 Startup Class

Next, each application should have a class called Startup with a Main method that looks as
follows:

Public Shared Sub Main(args() As String)

End Sub

This method then is set in the project properties as the Startup object.

'""'1.Jf""t I; [-

'61 Common Properties

... General
Build

Imports
Reference Path

DesignerDefaults
CJ ConfigurationProperties

Assembly [lame:

eOJri 'Exam. e
-.-

Qutput type:
.
\Afndows Application

B,.ootnamespace:

SecurityExample

Information - -

Project folder:

Projectfile:
Output name:

C: ~rojects~PIRIT~evelopment~oftvvareWchitectural Prototypelpt

SeCJlityExample, vbproj

SeOJrityExample,exe

--- -- ---
OK Cancel Help

Covansys COrp. 19 SPIRIT

. - . - - -- +_.. - .---......_. - -

DTSD
Rev. 3.0

10/31/06

9.4.2.2.1Configure Remoting
Before the application will "run", the application needs to configured for remoting. (All
applications will use remoting for message logging if for no other reason.) Since the remoting
configuration settings will be stipulated in the app.config file, the following call must be made to
the ConfigureRemoting routine:

RemotingConfiguration.Configure(
AppDomain.CurrentDomain.SetupInformation.configurationFile)

9.4.2.2.2Security Object
A global instance of the Security object is needed in your application so permissions can be
checked routinely in the application without having to instantiate a Security object each time.
This will be done by creating a shared member variable and read-only property for the Startup
class that is initialized either in the Main method or a method that Main calls before running the
application. Here is what this might look like:

I Public Class Startup

Private Shared mSecurity As Security

Public Shared ReadOnly Property Security as Security
Get

Return mSecurity
End Get

End Property

Public Shared Sub Main(ByVal args() As String)
RemotingConfiguration.Configure(. . .)

mSecurity = New Security()
If (Not mSecurity.CurrentUser Is Nothing)

Application.Run()
End If

End Sub

End Class

Since we are using a session manager to manage the login process - see the Special Notes section
below for further information - we are assumed to already be logged into the system. But just in
case, we must check to make sure the CurrentUser is already initialized.

9.4.2.3 Checking Permissions

Now that everything is set up, when you need to check permissions from within the application,
you simply need to have a line or two similar to this:

If (Startup.Security.CurrentUser.HasPermission (_
AccessLevel.Add, Feature.vendor_ComplianceBuy» Then
MessageBox.Show("User has permissions to add a " &

"Compliance Buy activity")
Else

MessageBox.Show("User DOES NOT HAVE permissions to " &
"add a Compliance Buy activity")

End If

Covansys Corp. 20 SPIRIT

DTSD
Rev. 3.0

I0/31/06

9.4.2.4 Calling Web Services

You may also need to call a web service to perform an action within the application. Because we
are using Digest Authentication on the server hosting the web service, you will need to set the
service proxy's credentials so they get pass along with the request. You can do this by calling the
SecurityCredentialsFactory method as shown here:

Dim Service As New MyService.Servicel
Service. Credentials =

SecurityCredentialsFactory.Create("my_user_name",
"password")

MessageBox.Show(Service.HelloWorld)

9.4.3 Special Notes
The singleton Security object controlling the single sign-on is not using a caching mechanism to
assist with expiring and refreshing its data. Thus, as long as this singleton object stays alive,
which it currently has set up as "forever" within the bounds of the session life span, it will keep
the original set of permissions. If this caching functionality is required, it should be integrated
before release into either a testing or production environment.

As described in the architecture examination, AccessLevels and Features are currently
represented as enumerations. These may need to be changed to classes to be more flexible in
their implementation. Minor changes in the code would result from this modification, but the
core functionality and ideas would act the same.

The Session Manager is a centralized application that will act as a service listener for the security
objects that will be shared between applications.

9.4.4 References
In addition to this document, it might be helpful to view the full architectural model for this
component. An HTML representation of this is available in the source control repository.

An analysis document also exists that describes why some changes were necessary in moving
forward with this security component in light of the security measures taken in the existing
DCWIC and other similar applications.

Information regarding securing ASP.NET web services, including detailed descriptions of all
authentication and authorization options, can be found at http://msdn.microsoft.com/library/en-
us/cpguidelhtml/cpconsecuringaspnetwebservices.asp.

10 System Components
The software is organized into a number of executables and libraries. Executables are used when
a non-modal window must be presented or in independent process must be executed. Examples of
these executables, also referred to as processes, are; the ParticipantList.exe, ParticipantFolder.exe,
WicSessionManager.exe. Libraries are used to encapsulate functionality use by more than
process.

Covansys Corp. 21 SPIRIT

DTSD
Rev. 3.0

I0/31/06

10.1 Session Management
A number of processes and components are used to manage the session and it's associated
background processes. The session is essentially the "wrapper" around the WIC applications.
Although each application is run in its own process space, each is dependent on interacting with
the session process (WicSessionManager) at runtime. In conjunction with the session is the
WicAppLoader which is used to launch the session and each of the applications as needed.

10.2 Starting the Applications
The WicAppLoader process encapsulates the functionality necessary to start other applications.
As an example of how this application works, a shortcut would be placed on users' desktops to
start up the ParticipantList application. The shortcut, however, does not directly start the
ParticipantList application. Instead, it points to the WicAppLoader and passes ParticipantList.exe
as an argument to the application. The WicAppLoader then makes sure everything is ready for
that application to run - makes sure the latest updates have been downloaded, starts the
WicSessionManager, makes sure the user is authenticated with the system - before starting the
application.

This application is implemented as a Windows Forms application with no user interface. This is
done so that it is transparent to the user using the system.

.do.M,.IF~

"", r 'COOlonU '''-1

UpdltlO I
Wic ge..Applk.lonLN.r::Applic.t&onlN.rlubj.c

Inilillinl ro

H.wO

: II.
LOlclSI80nM.II8\t8f nlechao;be CilU,d ~..noUtir. CIIHto i :
011I., PfOCiI. Mil be .~..n1t . .,ndIronoUI beh.vIor mu. ' :
IN 8mylilid with "1 r81.d~..m Ob_""'f. E "I,.I.dflO'" :
ob ,8Iouldd,tlrml,...LO'~S."O"M.".g'A"alh."d :

--'~~-'!"-"-'- j

IAutttentic8m;"U'..I..,.CUll9ntU8,. Nolllln8J: LoglnO

IAuth,ntlationU.nlglf.Cu""..,tU.,.. Nothlrtg): L08c1AppIiCiltion(Slrlnll(8ppllC8lionA'V.

U : .0. , .. , .. , .. , .

Figure 4 - Starting an Application

The diagram above depicts the general sequence of events and interactions that occur when
starting an application. This sequence diagram can be found in the WicAppLoader package in the
software model.

10.3 Managing the Session
Only one session (WicSessionManager process) can be running on a client machine at any given
time. As stated above, upon invocation of the first application (through the WicAppLoader) the

Covansys Corp. 22 SPIRIT

DTSD
Rev. 3.0

10/31/06

session is started prompting the user to sign on. Once signed on the session retrieves and
maintains the user profile information containing the authentication and authorization information
needed by the other applications at runtime. Each application (process) is can then access this
information via .NET Remoting as such the WicSessionManager process essentially acts as a host
for the remoted objects that are shared between all WIC applications running on a single machine.

pel Coliaboration.Security

.Dll.

Wlc.Meaaagea.Appilcationloader Obaerver

.instanceD!.

CU~»,,

,
I
:
:

cuse»
,,,
~ ----

(from WcPatfems)

.exe.
WlcAppLoader

.exe.
WlcSeaalonManager

«controls»

.I,
chost»,

Settinga .Dll.

Wlc.Wlndowa.Security

«invokes»
chosb

.exe.
ParUclpanWat

«use. (from Wc.Shamd)

«use.
i
I
I

-- -------
«use.

(fromWc.Shamd)

Figure 5 -WIC Session Collaborations

This relationship can be seen in the collaboration diagram in figure 5 in that the ParticipantList
process uses "remoted" runtime objects in the Security package that are hosted from the
WicSessionManager.

10.4 Applying Software Updates
The WicAppLoader process invokes the ApplicationUpdater process which is responsible for
downloading any software updates available for the application being started. These updates are
obtained by comparing an artifact version and/or date time stamp information between the local

Covansys Corp. 23 SPIRIT

DTSD
Rev. 3.0

10/31/06

manifest on the client and the "master" manifest located on the Web Server cluster. New

components are downloaded and applied prior to starting the application.

10.5 Keeping Reference Data Synchronized
The WIC database is composed 2 types of data; transactional and static. These 2 types can be
further classified into 5 specific categories; participant, vendor, financial, security and reference
data. The focus of this document is in regard to the static reference data. Normally speaking, this
data is used to provide referential integrity for code values, drive lookup lists, and control general
(non-security related) customization options normally set at the state level and does not change on
a regular basis.

Using smart client technology allows use to utilize each client machine to its fullest capability to
provide an optimal solution to the customer. In this case the large amount of static reference data
in the system can be stored on each client machine in a local relational database. Storing this data
on each client will reduce the total number of "round trips" to the central data store (via the
Service Oriented Architecture) and thereby improve the overall performance of the system.

Although this reference data is referred to as static, it does in fact change, but on a very infrequent
basis. Smart client technology will be used to keep each client's local copy of the data in sync
with the master copy located in the central data store.

When a WIC session is started, a Reference Data Synchronization (RDS) client process (exe) will
be started as well. This process will be managed by the WIC Session Manager and will poll the
central data store on startup and subsequently a set interval (TBD) throughout the session to
retrieve any changes to the reference data. It is expected that the majority of the updates will
occur during session startup as a background task. The polling process is in place to allow for
incremental updates that may occur during the day while the session is running.

The RDS client will use a GetReferenceData web service call to retrieve any updates by passing
the date and time of the last synchronization as an argument. (Note that this date and time is the
date and time as understood by the Central Data Store in order to avoid any time zone collisions.)
The service will return a ReferenceData collection object containing the date and time of the sync
request and a heterogeneous collection of the tables that have been changed since the last sync
data time. Each table in the collection will then replace the table in the local database. If no
updates are needed the service will return an empty collection. In either case, the date and time of
the request is then written to the local SessionSettings.xml configuration file to be used on the
next request.

Note that if any record in one of the target tables has a create date time or modify date time
greater than the clients date and time specified by the client the entire table is retrieved from the
central data store and replaced on the client machine.

This reference data will be stored on the client machine as serialized xml files.

Note that when a client machine is operating in offline mode the session manager will not start
the RDS client process since no central data store is available to poll.

During the course the update process one or more tables could be updated. Ifthe smart client
application attempts to access a table that is being updated by the RDS process the smart client

Covansys Corp. 24 SPIRIT

DTSD
Rev. 3.0

10/31/06

will pause momentarily until the update is complete. It should be noted that updating these tables
is a momentary activity that normally takes a fraction of a second.

In general the tables that are potential candidates for consideration are ones that are not changed
frequently and do not contain any participant, vendor, or financial information of a transactional
nature or security related data. The list of potential candidates can be found in Appendix A of this
document. (Note that list will grow as we continue through the design process.)

10.6 Processes vs. Applications
A Process [space] is a technical term used to describe a software component that has it's own
runtime space allocated to it by the operating system. These processes often use libraries
containing common software components. In doing so, these libraries run within that
application's process space. In our case processes (like ParticipantList.exe and
ParticipantFolder.exe) work together to form what is perceived as an application by the user.

For example, the ParticipantList executable performs the role of being the primary entry point for
the Clinic, CAS, and State Office applications. The ParticipantFolder executable is started by the
ParticipantList when the user opens a folder. More than one folder can be opened at any given
time, hence the need for an independent executables.

In each case the executables are started in a different mode which controls the feature/function set

that is available. (Note that access to these features and functions is then further governed by user
profile that contains privileges granted to the user via the role-based security model.)

10.7 Packaging and Deployment Strategies
Processes are complied into executables (exe files) and are used to encapsulate a unique set of
functionality. For example, searching for a participant is packaged into the ParticipantList
executable. Libraries are complied as dynamic linked libraries (dll files) and are used to package
components that are either re-used by executables and other libraries, or to package similar
functionality. For example, the interfaces displayed as part of the Clinic application that are
common across the PartipantList and ParticipantFolder executables are packaged into the
Wic.Windows.Participant.dll. In turn this library includes Wic.ServiceAgents which contains the
ParticipantServiceAgent class that provides the methods that invoke the WebService calls to the
Central Data Store.

As described above, a number of software components have been grouped into applications. As
an example, the system includes the Clinic, CAS, and State Office, and Vendor applications.
These applications all utilize more than one executable process. These relationships have been
documented in the Deployment View section of the software model and are named:

. Deployment.Clinic

. Deployment.CAS

. Deployment.StateOffice

. Deployment.Vendor

Each of these diagrams attempts to describe the inter-process relationships specific to the each for
the subject applications. Additional deployment diagrams have been provided that document
other processes as well address the low level dependency information for each process and related
library.

Covansys Corp. 25 SPIRIT

DTSD
Rev. 3.0

10/31/06

Consider the deployment diagram for the Clinic application in figure 6. We can see that
ParticipantList process invokes the ParticipantFolder process. These 2 processes make up the
majority of the Clinic application.

dd Deployment.Cllnic

Client PC

/
,

,,,
,-

"
«deploy.

",,,,
",

"

'I
1

1
1

",,
"

I
I

1
1

"
1

1
1

I
I

I
I

I
I"

I

«EXE.

«~!,PIOY' ParticlpantLIst
1

1
1

,
I,

I

",
1

1
1

1
1

",,,
I
I,

,
I
I
\
\
:
I
I
\,

«dep,IOY.,
\
I,
I
I
\,

'-,\,
'.\

'.,,
'.,,,,,\

'.,,,,
«deploy.,,

'.,,
'.,,,

'.,,
'.,'.'.,

«EXE.
WlcSesslonManager

«controls»

(from Corrponent View)(from Corrponen(View)

«EXE.

WlcAppLoader

/«inVOkeS.
«EXE.

ParticlpantFolder

(from Corrponent View)

(from Corrponent View)

Figure 6 -Clinic Deployment Diagram

We can also determine from the diagram the WicApploader starts the ParticipantList process. The
rational for using this inter process mechanism this is described in detail in the corresponding
detailed documentation contained the design addendums and software model. In brief, the
WicSessionManager essentially controls the session under which all of the WIC application run.
The WicApploader to ensures that the session is running (indicating that proper security protocols
are in place) and software any updates have been applied prior to starting the ParticipantList
process.

Figure 7 illustrates the library dependencies for the ParticipantList process. This diagram can also
be found in the Deployment View on the Software Model.

Covansys Corp. 26 SPIRIT

DTSD
Rev. 3.0

10/31/06

dd DeploymenlPartlclpantLlst

CJ
I
I
I
I

«de~loy»

:

.DLL.

Wlc.lnventoryMgmt

(from COlTponent View)

.EXE.

PartlclpantLlst

.DLL.

Wlc .Wlndows.Pa rtlc lpa nt

.DLL.

Wlc.Partlclpant

(fromColTponent View)
..............

Ifrol7\tq'1Tp4n~nt\Vib<v) -', ""', .DLL." ,',' : \ \" ''''', --, Wlc.Windowa.Calendar, , I I . \ \. ...

,,' ,',' : \ \', '.....
, I I I \ \ \ ...

,I' ,',. : \ "',, " ,\ \, ...

,,' ,',' : \ "',I I I I I ,... ...
,/ ,',' :', \ \ "... (fromCorrponentView), I I ,... \ \ ...

/ ,': : \ \ \ ...~...'I " I'''' ...
, " I' \ \.

, , I I'... ...
, , I I I , ,

I " I..., ...
, " I I

, I I I" ,
, " I I , \

, I' ,
, I I I..., \

" " I" ,
, I I I \ , ...

, I' I I \ \
I I I I \ ... ,

I I' ... I \. ,
, " I \

, I' I I \ ...
, , t I \ \. ,

I " I' \ \., " I... \ \.
" I',' : \ \ "

I I I' \ \.
I' I I \ ...

" It~ ~ \ " ~\
I \

: «DLL» "
t Wle.Security \
: \
I ,
I \
I \
I ,
I \
I \
II \

.,

'"

'"..

g-------.DLL.
CVNS.BPDS.Wlndows

(from COlTponent View) .DLL.
Wlc.Wlndows.Common

(from COlTponent View)

.DLL.
Wlc.Common .DLL.

Wlc.UUIIUes

(from COlTponent View)

,(DLL.

" 'Wlc.Shared

,/

//
(from COlTponent View)

(from COlTponent View)
(from COlTponent View)

(from COlTponent View)

Figure 7 -Deployment diagram for ParticipantList.exe

Note that other applications, processes, and libraries are documented in a similar fashion within
the Deployment View in the Software Model documentation.

The system includes the WIC Available Applications Manager (WAAM) which is used to control
the initial installation of the various WIC Modules on each client PC. Subsequent to this
installation all software updates to the installed applications are downloaded and applied on
demand as needed by the AutoUpdater process which is started by the WicApploader process
each time an application is started.

There are a number of sibling sub-folders created during installation on each client PC, two of
which are; Wic and Data. The Wic folder contains all the binary files that comprise the software
suite. The data folder contains a number of ASCII files used by the applications at runtime.

Covansys Corp. 27 SPIRIT

DTSD
Rev. 3.0

10/31/06

WIC Client Software
During installation shortcuts are created and added to the WIC Software menu located the
Start> All Programs menu. There is one installation script that installs all the client side
software as well as a shortcut manager that allows an authorized user to create the appropriate
application shortcuts to the software. For details regarding the installation of the software
please refer to the Software Installation Guide documentation.

WIC Web Server

The WIC Web Server script installs the Wic.Services component and creates the
Wic.Services virtual directory.

WIC Back Office Applications

The Back Office Server script installs the EOD and EOM software components

10.7.1 Client Applications
The following applications typically reside on a client PC and provide the majority of the end
user functionality contained in the system.

Clinic

The Clinic application is actually as combination of the ParticipantList.exe and
ParticipantFolder.exe assemblies. The ParticipantList.exe is the primary interface for the Clinic
application and launches the ParticipantFolder.exe assembly as needed. The Startup command for
clinic is:

WicApploader.exe ParticipantList.exe Clinic

CAS

The Clinic application uses the same assemblies as the clinic application as well as the Master
Calendar assembly, also launched from Participant list. The startup command is:

WicApploader.exe ParticipantList.exe CAS

State Office
The State Office application uses the same assemblies as the clinic application. The startup
command is:

WicApploader.exe ParticipantList.exe State

Vendor Management
The Vendor Management application is actually as combination of the Vendorist.exe and
VendorFolder.exe assemblies. The VendorList.exe is the primary interface for the Vendor
application and launches the VendorFolder.exe assembly as needed. The Startup command for
Vendor is:

WicApploader.exe VendorList.exe

Financial Management
The primary assembly for the Financial Management application is FinanciaIManagement.exe.
The startup command is:

Covansys Corp. 28 SPIRIT

DTSD
Rev. 3.0

10/31/06

WicApploader.exe FinancialManagement.exe

Direct Distribution

The primary assembly for the Direct Distribution application is DirectDistribution.exe. The
startup command is:

WicApploader.exe DirectDistribution.exe

Reference Utility
The primary assembly for the Reference Utility application is WicRefUti1.exe. The startup
command is:

WicApploader.exe WicRefUti1.exe

Management Console
The primary assembly for the Management Console application is WicMgmtConsole.exe. The
startup command is:

WicApploader.exe WicMgmtConsole.exe

System Administration
The primary assembly for the System Administration application is WicSystemAdmin.exe. The
startup command is:

WicApploader.exe WicSystemAdmin.exe

Configuration Editor (Administrative tool)
The primary assembly for the Wic Configuration Editor application is WicConfigEditor.exe. The
startup command is:

WicConfigEditor .exe

10.7.2 Supporting Assemblies and Utilities
The following are assemblies and utilities that are used by the various applications throughout the
system based on each applications specific needs.

WicApploader
The WicApploader.exe process is used to start all WIC applications. It is responsible for ensuring
that the most current application updates are downloaded and that if needed the
WicSessionManager is running prior to starting the requested WIC Application. The
WicApploader displays a Splash screen which is used by the WicAppLoader to provide progress
information to the user during the startup process.

The WicApploader first invokes the WicAppUpdater which ensures that any applicable
software updates are applied to the system.

If the requested application is a batch process then the WicApploader starts the requested process
and terminates skipping the remaining activities described below.

Covansys Corp. 29 SPIRIT

DTSD
Rev. 3.0

10/31/06

If the requested application is not batch process then the WicApploader displays the splash screen
and configures the following .NET Remoting:

· A singleton service providing a reference to an instance of the
Wic .Messages.Applica tionLoader .ApplicationLoaderSubj ect class fom the
WicApploader process. This is used by other processes to relay messages to the
WicApploader.

. A client used to reference an instance of the

Wic. Shared. Securi ty. AuthenticatiOnManager class typically provided by the
WicSessionManager. This class provides the information needed by all WIC
applications to authenticate during each Web Service invocation.

· A client used to reference an instance of the

Wic. Shared. Settings. SettingsManager class typically provided by the
WicSessionManager. This class provides information regarding the user that is "signed
on" to the system. This information (which includes the users role based pennission
set) is used by each application to perform interactive authorization to the various
function points in each of the WIC applications.

After configuring .NET Remoting, the WicApploader checks to see if the WicSessionManager is
running. If not, the WicApploader synchronously starts the WicSessionManager, puts its main
thread in a wait mode, listening for messages via the instance ofthe
ApplicationLoaderSubj ect exposed as a singleton service via .NET Remoting. The
WicApploader accomplishes this by attaching an in process instance of the
ApplicationLoaderObserver class to the aforementioned singleton instance of
ApplicationLoaderSubject class.Thisallowsthe WicApploaderprocessto sit in a wait
state but still receive event notifications (via callback invocations from the
ApplicationLoaderSubject object) to the attached ApplicationLoaderObserver object.
The WicApploader listens for 2 events from the observer; a LoadAttemptProgress event and a
LoadAttemptResponded event.

The LoadAttemptProgress event is sent from the process being started (in this case the
WicSessionManager) periodically and contains information that is displayed by the
WicApploader on the splash screen.

The LoadAttemptResponded event is sent from the process being started (in this case the
WicSessionManager) to signalthe WIcApploader that it can continue. (In the case of the
WIcSessionManager this means that the user is signed on and that the instances of the
AuthenticationManager and SettingsManager classes are available vis .NE Remoting. In
response to receiving this event notification the WicApploader releases the wait state of its main
thread and continues.

At this point the WicApploader assess the result code returned by in the LoadAttemptResponded
event notification. If the result indicate success, the WicApploader asynchronously starts the
requested WIC application..

Finally, the WicApploader dismisses the splash screen and terminates.

WicAppUpdater

Covansys Corp. 30 SPIRIT

DTSD
Rev. 3.0

10/31/06

checks the designated Web Server for any software updates. If any updates are found, they are
downloaded and applied to the system.

WicSessionManager
The WicSessionManager is responsible for maintaining a local "session" containing user
authentication and authorization information that can be used by any of the WIC applications via
.NET Remoting.

While starting the WicSessionmanger configures the following .NET Remoting:

. A client used to reference an instance of the

wic .Messages. ApplicationLoader .ApplicationLoaderSubj ect classfrom
the WicApploader process. The WicSessionManager uses this remoted object to relay
messages to the WicApploader.

· A singleton service referencing an instance of the
Wic. Shared. Security .AuthenticationManager class. This class provides the
information needed by all WIC applications to authenticate during each Web Service
invocation.

. A singleton service referencing an instance of the
Wic. Shared. Settings. SettingsManager class. This class provides information
regarding the user that is "signed on" to the system. This information (which includes
the users role based permission set) is used by each application to perform interactive
authorization to the various function points in each of the WIC applications.

While starting a session the process prompts for user id and password information and
authenticates the user to the system.

Once the user is authenticated the WicSessionManager retrieves the user authorization
information and places it in an remotable instance of the AuthenticationManager class.
Subsequently, the process then attempts to update the local reference data. (Note that while
checking for, and retrieving, local reference data updates the WicSessionManager displays
progress window.)

The WicSessionManager uses the UpdateLocalReferenceData data web service to retrieve all
tables (as xml files) that have been touched since the last time the WicSessionManager requested
and update. (this date time stamp information used is stored locally on each PC and is exposed as
a property of the SessionSettings class. All updates are written as xml files to the data folder
specified by the SessionSettings class.

The WicSessionManager is available in the system tray while running. Selecting the Update
Local Reference Data menu item from the icons context menu (right-click on the menu) forces a
real-time update. Selecting the Logoff menu item closes any open wic applications and ends the
sessIOn.

Wic.Loca/Cache. Loca/Referenc Data
Local reference data refers to a number of "semi-static" lists of data that are maintained on the

Central Data Store and downloaded on demand to each PC by the WicSessionManager. Local
Reference Data is identified and managed via the ReferenceTableCatalog table in the database.
This table contains a list of all tables in the database that contain data that can be treated as local

reference data (i.e. can be downloaded to each PC as an xml file). Each table referenced in this

Covansys Corp. 31 SPIRIT

DTSD
Rev. 3.0

10/31/06

table has an insert/update/delete trigger that modifies the ModiJyDttm attribute of the
corresponding row in the ReferenceTableCatalog to reflect the last date and time the table was
"touched". The following as an example of one of these triggers:

CREATE TRIGGER [dbo].[tgr_wicstatus_iud]
ON dbo.WICSTATUS
FOR INSERT, UPDATE, DELETE
AS
UPDATE REFERENCETABLECATALOG SET MODIFYDTTM = GETDATEO WHERE
REFERENCET ABLECA TALOGID = 'WICST ATUS'

Local reference data is accessed by the software via an instance of the
Wic.LocaICache.LocaIReferenceData class which provides an enumeration of known list of
datasets that are available as local reference data.

Wic.Loca/Cache. Dictionary
Provides a customized interface to the ReferenceDictionary.xml file via the LocalReferenceData
class. This customized interface is required since the data contained in the xml file is of a
heterogeneous nature.

Wic.Loca/Cache. StateBusinessRu/es
Provides a customized interface to the StateBusinessRules.xml file via the LocalReferenceData
class. This customized interface is required since the data contained in the xml file is of a
heterogeneous nature.

Wic.Common.SessionSettings
The Wic.Common.SessionSettings class provides an interface to the Session Settings xml file is
used to store session level information on each client Pc. The SessionSettings.xml file must be
located in the same folder as the binaries attempting to access it via the Session Settings class.

Tag names used to identiJy sensitive information are obfuscated using a nondescript naming
convention for additional security. For clarity sake following obfuscation is being used:

T1 contains the data source
T2 contains the database name
T3 contains the database user id
T4 contains the database password

CVNS.BPDS.Logger (Event Logging Utility)

Logger is component of the CVNS.BPDS Framework that provide for a consistent method of
retaining pertinent application information and events. The retention mechanism used is a text file
whose file name is the current date expressed as YYYYMMDD with a .log extension appended to
it. This provides us with a daily log file and provide for easier archival and cleanup of historical
logs. Note that this archival/cleanup mechanism is the responsibility of the individual maintaining
the machine and is not provided by the framework.

Following the standard set by Microsoft these text files are created at:

tSystemRoott/system32/Logfiles/CVNS.BPDS

Covansys Corp. 32 SPIRIT

DTSD
Rev. 3.0

10/31/06

where %SystemRoot% is typically c:\Windows. Each entry in the log file contains: a
timestamp, the full path to the executable process that made the entry, and the actual data
to be logged. Each of these elements is separated by a colon.

Work supports four types of information that can be written to the log file. They are; Software
Updater progress and results, a stack trace for all exceptions, DataSync results, and optionally all
of the sql statements sent to the database. Further details on the information logged for each of
these is outlined below.

Software Updater
The Software Updater logs the following information:
The start of the process, including the area that is being updated
The number of files and assemblies that need to be updated
The successful download of each artifact including the date time stamp for files and the
version number for assemblies
The execution of any Post Update commands
The completion status of the process
Any and all errors that might occur

Stack trace for all exceptions
All exceptions that are handled by the function HandleException that is provided by the
CVNS.BPDS.Windows.Forms.Form class be logged with a full stack trace.

DataSync results
The DataSync application logs it's progress and any errors that occur.

Sql Statements
While the logging in each of the scenarios mentioned above is automatically enabled and
cannot be disabled, the logging of SQL Statements is disabled by default and must explicitly
be enabled by adding an appsetting to the appropriate .config file. In the case of on-line
clients it must be enabled in the web.config on the central web server. For off-line clients it
must enabled in each and every app.config file whose sql you wish to log. This entry is: <add
key="CVNS.BPDS.Logger.Level" value="Info" I>

10.7.3 Web Server Configuration
The Web Server runs 13 sets of Virtual Directories; one for each ITO, these are also referred to as
Sites. Each Site has the following configuration:

Covansys Corp. 33 SPIRIT

DTSD
Rev. 3.0

10/31/06

~ Internet Information Services (115) Manager ~_
.-., x,> " ... -'."', .,',-,."." h' ,' ,

~ Eile B.ction ~iew Window !::!.elp

Computer I L
'ilOVR-SPIRITWEBOl (local computer) \

U
EI'~'~ OVR-SPIRITWEBOI(local computer)

$,) Application Pools
B J Web Sites
: 13..8 DefaultWeb Site

: $~'-! _vtLbin[!]..~ ACL

~""".J1 Chickasaw
, $"~ Services

: I$,JI ClientUpdate
i ~"..:Jbin
, !B ,) Settings

$J :J:1 VQS
: £E J bin
; B"'..:JData

~"'..J Archive
~ ,) Deletion
~" :J Export

; !B :J Import
~'..J:1 Web
j $,) bin
! !B :J Settings

: £E"'~ Data

£E".~ Choctaw
~..~ EightNorthernPueblos
E!:J"~~ FiveSandoval
!B"~ MuskogeeCreek
$".~ OkInterTribalCouncii
$'''

~
' Osage

£E..'; . Otoe

riJ..~ SanFelipe
, , $"~ SantoDomingo

Figure 8 -lIS Virtual Directory Structure

The Services directory is "pointed to" the physical directory C:\WIC\Sites\[ITO]\Services where
[ITO] is the name of the ITO. This physical directory contains all the assemblies and
configuration files needed to publish the specified ITO's web services.

The VQS directory is "pointed to" the physical directory C:\WIC\Sites\[ITO]\VQS where [ITO]
is the name of the ITO. This physical directory contains all the assemblies and configuration files
needed to publish the ITO's Vendor Questionnaire System web application. (Online Vendor
Applications and Price Surveys)

The Web directory is "pointed to" the physical directory C:\WIC\Sites\[ITO]\Web where [ITO] is
the name of the ITO. This physical directory contains all the assemblies and configuration files
needed to publish the ITO's Participant Questionnaire web application.

Covansys Corp. 34 SPIRIT

DTSD
Rev. 3.0

10/31/06

lit My Documents
- " "

fjle !;.dit ~iew F~vorites 10015 !::!elp

\.) Back ~ V ~ , I.p Search lit:> Folders 11m!.

Agdress Ie My Documents

Folders x I Name
. ._." ~ -r~ . "

EJ e:a Wic
I!J t:J ClientUpdate
EJ fC:I Sites

I!J iO ACL
EJ b Chickasaw

EJ IQ Data
o Archives

I!J Ii::J Services
EJe:. VQS

o bin
EJe. Data

iO Archive
b Deletion
e:. Export
b Import

I!J b Web
I!J b Choctaw
I!J 0 EightNorthernPueblos
I!J b FiveSandoval
I!J e. MuskDgeeCreek
I!J 0 OkInterTrlbalCouncll
I!J Q Osage
I!Je. Otoe
I!Jb SanFelipe
I!J It:! SantoDomingo

Figure 9 -Web Server Physical Folder Structure

Size

The VQS Folder in each ITa's folder hierarchy contains a number of sub-folders that are used to
exchange data between the VQS Web Application and the ITa's SPIRIT System. In order to
facilitate this file exchange there are 2 Windows Services running on the Web Server;
VQS_SurveyImport and VQSSurveyProcessor..

EJ ~ Wic

IE i:J ClientUpdate
IE e:::. Sites
EJ e:::. WindowsServices

iC::Jbin
r-"_

Figure 10-Installation folder for the Windows Services

The Vqs_SurveyImport service is a component of the VQS Web Site that monitors specified
folders for the arrival ofxml documents that are to be used to publish and/or send invitations to
surveys. The service is installed in C:\Wic\WindowsServices\bin. This service uses a
configuration file named VQS_SurveyImport.xml which contains site information detailing the
list of folders to be monitored as well as the database connection information to be used to store
the processed xml documents. The VQS_SurveyImport service does not use web services to
communicate with the database. Since the service resides on the web server and is in close
proximity to the database server a SqlClient connection is established directly with the database
in order to eliminate any unnecessary traffic via the web services. Below is a sample entry from
the VQS_SurveyImport.xml file:

Covansys Corp. 35 SPIRIT

DTSD
Rev. 3.0

10/31/06

<Sites>
<Site name="Chickasaw" >

<dbType>SQLSERVER</dbType>
<dbServer>ls;gdjor</dbServer>
<dbSchema>flgjsvojs[v</dbSchema>
<dbUserID>sldjosdfg</dbUserID>
<dbPassword>sobjssos</dbPassword>
<Userld>gpweirhq</Userld>

<WebUrl>http://localhost/Chickasaw/VQS_Web/</WebUrl>
<VqsFtpSite>c:\Wic\Sites\Chickasaw\VQS\Data</VqsFtpSite>

<VqsSurveyTemplates>c:\Wic\Sites\Chickasaw\VQs\VQS_SurveyTemplates</VqsSurveyTemplates
>

<vqsschemas>c:\Wic\Sites\Chickasaw\VQs\VQS_Schemas</vqsSchemas>
<FromEmailAddress>vqsweb@chickasaw.com</FromEmailAddress>
<SmtpServer>172.16.1.254</SmtpServer>

</Site>
</Sites>

The VQSSurveyProcesor service is component of the SPIRIT system that monitors specified
folders to the arrival of xml documents containing responses to surveys that have been posted to
the VQS web site. The service is installed in C:\Wic\WindowsServices\bin. This service uses a
configuration file named VQSSurveyProcessor.xml which contains site information detailing the
list of folders to be monitored as well as the database connection information to be used to store
the processed xml documents for each ITO. The VQSSurveyProcessor service does not use web
services to communicate with the database. Since the service resides on the web server and is in
close proximity to the database server a SqlClient connection is established directly with the
database in order to eliminate any unnecessary traffic via the web services. Below is a sample
entry from the VQSSurveyProcessor.xml file:

<Sites>
<Site name="Chickasaw">

<SmtpServer>172. 16. 1.254 </SmtpServer>
<SettingsPath>c:\Sites\Chickasaw\Services</SettingsPath>
<MonitorPath>c:\Sites\Chickasaw\VQS\Data\Export</MonitorPath>
<ArchivePath>c:\Sites\Chickasaw\Data\Archives</ArchivePath>

<Userld>FGOjJW/DiOQvxQrYOodZhg==</Userld>
<Password>FGOjJW/DiOQvxQrYOodZhg==</Password>

<EmailNotificationList>rnash@covansys.com;thumphries@covansys.com</EmailNotificationLi
st>

<EmailSender>VqsSurveyProcessor@spirit.org</EmailSender>
</Site>

</Sites>

Notice that in this configuration the VQS_SurveyImport service watches the Import of each ITO
VQS web site (C:\Wic\[ITO]\VQS\Data\Import; the value of the VqsFtpSite element is used in
conjunction with the Import folder which is coded into the software) while the
VQSSurveyProcessor service watches the Export folder of each ITO VQS web site (value of the
MonitorPath element).

This mechanism must be in place because the VQS web site can be configured as a standalone
website and database that uses FTP to exchange data. In this installation however, the VQS
website and the SPIRIT system are installed on the same server and use the same database
therefore the exchange of files is facilitated by simply placing the files in the designated folders
thereby circumventing the use of FTP.

To manually install the processors as a windows services open a cmd window and run the
following command from the folder containing the executable:

Covansys Corp. 36 SPIRIT

DTSD
Rev. 3.0

10/31/06

C:\WINDOWS\Microsoft.NET\Framework\vl.I.4322\installutil Ii [ProcessorExe].
(Where [ProcessorExe] is the name of the exe to be installed as a windows service.)

Once completed start the service by using the Web Server's Computer Management application
(right click on My Computer and select Mange then expand Services and Applications and select
the Services item. Select the process name and press the start button in the toolbar.

To stop the service use the Web Server's Computer Management application (right click on My
Computer and select Mange then expand Services and Applications and select the Services item.
Select the process name and press the stop button in the toolbar.

To manually un install the windows service, stop the service (see above) then open a cmd window
and run the following command from the folder containing the executable:

C:\WINDOWS\Microsoft.NET\Framework\vl.l.4322\installutil lu [ProcessorExe].
(Where [ProcessorExe] is the name of the exe to be uninstalled.)

Covansys Corp. 37 SPIRIT

DTSD
Rev. 3.0

10/31/06

10.7.4 Application Server Configuration
The Application Server is used to host the End-of-Day and End-of-Month processing. Similar to
the Web Server, a folder structure in in place for each of the 13 ITO's; C:\WIC\Sites\[ITO] where
[ITO] is the name of the ITO. Both the EODProcess and EOMProcess executables reside in the

??? folder and used to run the respective processes for each ITO. This is accomplished by passing
the name of the ITO as a command line argument when starting the process. Where name is the
value of the name attribute found the EODProcess.xml file. Note that both processes use the
EODProcess.xml configuration file. Below is a sample site entry from the EODProcess.xml file.

<Sites>
<Site name="Chickasaw" >

<ProcessId>WICEOD</ProcessId>

<BankingSystemName>BANKING</BankingSystemName>
<CdcSystemName>CDC</CdcSystemName>
<StateSystemName>STATE</StateSystemName>
<UserId>FGOjJW/DiOQvxQrYOodZhg==</UserId>
<Password>nXZy/kQTMEOlIwBC22nsQQ==</Password>

<SmtpServer>172. 16. 1.254</SmtpServer>
<EmailSender>eodprocess@chickasaw.net</EmailSender>

<SettingsPath>c:\WIC\Sites\Chickasaw</SettingsPath>
<CdcFolder>c:\WIC\Sites\Chickasaw\Data\EOD\Cdc</CdcFolder>
<BankingFolder>c:\WIC\Sites\Chickasaw\Data\EOD\Banking</BankingFolder>
<VendorFolder>c:\WIC\Sites\Chickasaw\Data\EOD\Vendor</VendorFolder>

<EomReportsFolder>c:\WIC\Sites\Chickasaw\Data\EOM\Reports</EomReportsFolder>
<LogFileFolder>c:\WIC\Sites\Chickasaw\Data\EOD</LogFileFolder>
<DefaultLogFileName>LogFile.txt</DefaultLogFileName>

</Site>
</Sites>

Notice the Settings Path element that references the location of ITO's SessionSettings.xml file
where the database connection information resides. Note that the ProcessId and various system
name elements must match entries in the COMMREQUEST, EMAILRECIPIENT, and
EMAILCONTENT tables in the ITO's database. The UserId and Password elements must contain
encrypted values for a user in the USERPROFILE table of the ITO's database.

The EOD Process can connect via FTP to an external banking contractor, the CDC, and/or a
designated State entity for the purposes of sending and receiving files. This communication
information is stored in the COMMREQUEST table. The various system name elements in the
configuration information stipulate the SYSTEMNAME value to be used when retrieving the
appropriate record from the COMMREQUEST table. IN the sample above the communication
information for the Banking contractor can be found on the WICEOD/BANKING record in the
COMMREQUEST table of the ITO's database.

Note that folders referenced in the COMMREQUEST records must exist in the Application
Server. In general the following rules should be followed:

· If files are to be send and/or received from an external banking contractor
o Ensure that a WICEOD/BANKING record is in the COMMREQUEST table.
o Ensure that the BankingSystemName element in the EODProcess.xml file has the

same value as the SYSTEMNAME field of the corresponding banking record in
the COMMREQUEST table. Typically this value is 'BANKING'

o Ensure that the values of the INBOUNDFOLDER and OUTBOUNDFOLDER
fields in the WICEOD/BANKING Record in the COMMREQUEST table refer
to the same path as the value specified in the BankingFolder element of the
EODProcess.xml file.

Covansys Corp. 38 SPIRIT

. --

DTSD
Rev. 3.0

10/31/06

o Ensure that paths referenced in the INBOUNDPOSTFOLDER and
OUTBOUNDPOSTFOLDER exist on the Application Server.

. If files are to be end to the CDC (Note that we do not support receiving files from the
CDC)

o Ensure that a WICEOD/CDC record is in the COMMREQUEST table.
o Ensure that the CdcSystemName element in the EODProcess.xml file has the

same value as the SYSTEMNAME field of the corresponding cdc record in the
COMMREQUEST table. Typically this value is 'CDC'

o Ensure that the value of the OUTBOUNDFOLDER field in the WICEOD/CDC
Record in the COMMREQUEST table refers to the same path as the value
specified in the CdcFolder element of the EODProcess.xml file.

o Ensure that paths referenced in the INBOUNDPOSTFOLDER and
OUTBOUNDPOSTFOLDER exist on the Application Server.

. If participation files are to be sent to another State Agency, e.g. State of Oklahoma. (Note
that we do not support receiving files from other state agencies)

o Ensure that a WICEOD/STATE record is in the COMMREQUEST table.
o Ensure that the StateSystemName element in the EODProcess.xml file has the

same value as the SYSTEMNAME field of the corresponding state record in the
COMMREQUEST table. Typically this value is 'STATE'.

o Ensure that paths referenced in the INBOUNDPOSTFOLDER and
OUTBOUNDPOSTFOLDER exist on the Application Server.

. If any of the COMMREQUEST records have the SENDEMAIL field set to 'V' then
ensure that there are corresponding entries in the EMAILRECIPIENT and
EMAILCONTECT tables.

Covansys Corp. 39 SPIRIT

DTSD
Rev. 3.0

10/31/06

Server Configuration Overview
The following diagram depicts the various servers, processes, and file system structures in place
for the SPIRIT system.

ClientPC

WlC Application

WebServer

(n-mmm--mniisrnmm-m ,]

! I Chickasaw WebServices I!
, (Servicas) ,

web.config

Chickasaw Participant
Survey (Web)

W8b.COrifog

Chickasaw VQS (VQS)

web.confHd I[1
O_h .__n "".....'__h

- _. ---

VQS_Surveylmport
(VoAndowsService)

VQS_Surveylmportxml

VQSSurveyProcessor
(Windows Service)

VQSSurveyProcessor.xml

- - --- --~.

AppServer

CDC

STATE

L-.. -Starts------ VoAndows Task

Scheduler Starts '

EOD Process

I EODProcess.xmlI

I

Exlerr\al System (FTP Sije)

I
Account

Inbox

Outbox

Starting the client-side applications

Covansys Corp. 40 SPIRIT

DTSD
Rev. 3.0

10/31/06

All client-side WIC applications are started using the WicApploader. In order to start an
application you would use the following syntax from a command line.

WicApploader.exe [processname] [args]

[processname] is the name of the exe to be started.

[args] are the arguments (if any) to be passed to the exe being started

For example:
The following command line invocation will start the participantList application in Clinic mode:

WicApploader.exe ParticipantList.exe Clinic

Starting the batch processes
The EOD and EOM processes are typically started by the windows task scheduler using the
following syntax.

EODProcess.exe [site]
EOMProcess.exe [site]

Where [site] is the name of the ITO as listed in the name attribute of the Site element in the
EODProcess.xml file which is located in the same folder as the EODProcess.exe and

EOMProcess.exe files. (Note that both exe use the same xml configuration file.)

10.7.5 Packaging Overview
The followinglistwill serveas a highleveloverviewof the variouspackagesincludedas partof
the system.

Covansys Corp. 41 SPIRIT

Package Type Description

DataSyncClient EXE Process used to control checking out and checking in clinic
data.

DirectDistribution EXE Process used to record redemption of food benefits in a
direct distribution environment. Primary exe of the Direct
Distribution aDDlication/module

EODProcess EXE End-of-Day processes. Run as scheduled tasks on the
batch/application server

EOMProcess EXE End-of-Month processes. Run as scheduled tasks on the
batch/aDDlication server

FinancialManagement EXE Process used to manage financial information such as
joumals and rebates. Primary exe of the Financial Mgmt
application/module

MasterCalendar EXE Process used to manage clinic working hours and
appointment resources. Secondary exe of the CAS
application/module

ParticipantFolder EXE Process used to manage information regarding a
participant. Acts as a gateway to the certification process
(Wic.CertGuidedScript) Secondary exe of the Clinic, CAS,
and State Office aDPlicationslmodules

ParticipantList EXE Process used to search for participants. Acts as a gateway
to the Participant Folder (ParticipantFolder). Primary exe of
the Clinic, CAS, and State Office applications/modules.

ReportGenerator EXE Process used to create, run, print, and store adhoc queries

Reports N/A Repository of crystal report templates used by the system
ScheduleJobAdmin EXE Process used to manage the scheduling of the EOD and

DTSD
Rev. 3.0

10/31/06

Covansys Corp. 42 SPIRIT

EOM processes

VendorFolder EXE Process used to manage infonnation regarding a vendor.
Secondary exe of the Vendor Mamt aaalication/module.

VendorList EXE Process used to search for vendors. Acts as a gateway to
the VendorFolder (VendorFolder). Primary exe of the
Vendor Momt application/module.

VQSSurveyProcessor EXE Windows Service used to process incoming survey
response documents (e.g. Online Vendor Applications and
Vendor Proce Surveys)

WAAM EXE WIC Available Applications Manager. Process used to
perfonn the initial installation of the Client WIC
applications. (E.g. Clinic, State Office, CAS, Vendor Mgmt,
etc.)

WicApploader EXE Process used to launch all other WIC

applications/modules. Ensures that a session is running
(WicSessionManager) and that all applicable software
updates have been applied (CVNS.BPDS.AutoUadater)

WicConfigEditor EXE Utility used to configure the various session settings for
both the client and server applications.

WicMgmtConsole EXE Process used to manage user profiles, roles, pennissions,
and remote machine arofiles.

WicRefUtii EXE Process used to manage the various types of reference
data used by the system (E.g. Default food packages, food
items, counties, risk factors, etc.)

WicSessionManager EXE Process that provides for a single sign-on environment on
each client PC.

WicSystemAdmin EXE Process used to manage system-wide data relationships
(E.g. (outreach) programs and organizations, state and
local use auestions, etc.)

Wic.Web.Questionnaire DLL ASP.NET web Application used to gather infonnation from
participants

Wic.Windows. Breastfeeding DLL Library containing user interface components specific to
the breastfeedina namesaace.

Wic.Windows.Calandar DLL Library containing user interface components specific to
the calendar and appointment maintenance

Wic.Windows.CaseloadMgmt DLL Library containing user interface components specific to
caseload manaaement

Wic.windows. Charting DLL Library containing user interface components specific to
displayino Growth Charts.

Wic.Windows.Common DLL Library containing common user interface components
used across several assemblies

Wic.Windows. Foodlnstruments DLL Library containing user interface components specific to
food packages, prescriations, and benefits issuance.

Wic.Windows.lnventory DLL Library containing user interface components specific to
oeneral inventorv manaaement.

Wic.Windows. Participant DLL Library containing user interface components specific to
manaaina aarticiaant infonnation.

Wic.Windows.Reporting DLL Library containing user interface components specific to
producino reports.

Wic.Windows.Security DLL Library containing user interface components related to the
management of security related features. (E.g. user
profiles, roles, arivileaes, etc)

Wic.Windows.Vendor DLL Library containing user interface components specific to
manaoino vendor infonnation.

Wic. CertGuidedScript DLL Library containing user interface components specific to
the participant certification process

Wic.AgencyOutreach DLL Library containing business service components specific to
the manaaement of outreach aaencv infonnation.

Wic.BatchProcess DLL Library containing business service components specific to
the execution and management of batch processes (E.g.
EOD, EOM)

Wic.Breastfeeding DLL Library containing business service components specific to
the breastfeedina namesaace

Wic.Calendar DLL Library containing business service components specific to
manaoino calendars and appointments

Wic.CaseloadMgmt DLL Library containing business service components specific to
case load manaoement

Wic.Charting DLL Library containing business service components specific to

DTSD
Rev. 3.0

10/31/06

A dependency matrix has been included, in the form of an Excel spreadsheet, depicting the
various assembly level dependencies of the software.

10.8 Storing the Data
Each ITa will have there own database instance. All of the databases will "run" on a single SQL
Server Active/Passive Cluster. Each of these databases is considered to be the "Central Data

Store" for the ITOs. The system uses a large amount of reference data to populate selection lists,

Covansys Corp. 43 SPIRIT

growth charts and statistical growth information
Wic.Common DLL Library containing common business service components

used by several assemblies.
Wic. DataSynchronization DLL Library containing business service components specific to

checkina out and checkina in participant data
Wic. DirectDistribution DLL Library containing business service components specific to

tracking the redemption of food benefits in a direct
distribution environment

Wic.FinancialManagement DLL Library containing business service components specific to
financial manaaement

Wic.Food Instruments DLL Library containing business service components specific to
food packaoes, prescriptions, and benefits issuance.

Wic.lnventory DLL Library containing business service components specific to
aeneral inventorv manaaement

Wic.LocalCache DLL Library containing common business service components
used to manage and provide access to localize system
information to the client

Wic.MailMerge DLL Library containing business service components specific to
meroino system data to MS Word documents

Wic.Messages.ApplicationLoader DLL Library containing business service components specific to
the use of .NET Remotina.

Wic.Participant DLL Library containing business service components specific to
the management of participant data

Wic.Patterns DLL Library containing interface patterns implemented in
several assemblies

Wic. Reporting DLL Library containing business service components specific to
generating reports.

Wic.Security DLL Library containing business service components related to
the in memory manaoement of secure information.

Wic.ServiceAgents DLL Library containing proxy services used between the client
and web service processes for those applications that can
operate in both a connected and disconnected
environment.

Wic.Services DLL ASP.NET assembly containing the web service interfaces
used by the client applications.

Wic.Shared DLL Library containing (.NET) remotable classes shared across
the various client applications.

Wic. Utilities DLL Library containing business service components generic to
the overall system

Wic.Vendor DLL Library containing business service components specific to
vendor management.

CVNS.BPDS.DataAccess DLL Library containing the generic ANSI compliant
implementation of the OLEDB Data Access Laver

CVNS.BPDS.DataAccess.SqIServer DLL Library containing the MS SQL Server specific
implementation of the CVNS.BPDS.DataAccess library

CVNS.BPDS.Downloader DLL Library containing components used to manage the
exchanae of files from one host to another

CVNS. BPDS. Devices. SignatureCapture DLL Library providing a generic interface over the Topaz
signature device driver

CVNS.BPDS.Logger DLL Library providing generic application logging services

CVNS.BPDS.Security DLL Library providing a set of cryptographic services that can
be used to encrvpUdecrvpt and hash sensitive data

CVNS.BPDS.Updater DLL Library providing a workflow that allows for software
updates usina a software manifest

CVNS.BPDSWindows DLL Library providing a set of base classes and utilities that can
be used to for error handling at the user interface layer.

-- u

DTSD
Rev. 3.0

10/31/06

provide code translations, and maintain foreign key relationships. This reference data is stored not
only in the central data store but on each client machine as well. The reference data is stored in
the form of xml files and is kept in sync with the central data store via the RDS (Reference Data
Synchronization) process which is controlled by the WicSessionManager process. The RDS
process is run at the beginning of each session as well as throughout the duration of the session on
a regularly scheduled interval. Having the reference data on each client machine reduces the
overall number of round trips to the central data store as well as the total size of the service
responses containing reference data code values. The RDS process uses the Service Oriented
Architecture to perform the synchronization.

A number of client machines will be capable of checking out clinic data and operating in an off-
line capacity. These machines will each have a SQL Server database to store this data.

The process steps related to checking data in and out from the central data store are fully
documented in Chapter 11 of the Application Administration DFDD. The mechanics supporting
this process use the same Service Oriented Architecture to perform the synchronization.

11 Software Design Specifications
The detailed technical design of the software is expressed using a number ofUML techniques.
There are 2 primary sets of detailed designs; the software model and the data model.

11.1 Software Modeling
The software model is documented using Enterprise Architect and is published in HTML format.
The model contains a number of project artifacts that describe in detail the structure and
collaborations of the various software components of the system. The following sections provide
a brief description of each artifact type.

11.1.1 Detailed Design Addendums
Detailed Design Addendum documents are used to provide a map from the DFDD to the Object
Model. Each addendum contains a table that cross references each interface described in the
DFDD to the corresponding software artifact to be implemented. The addendum also contains a
listing of all the sequence diagrams used to describe the various runtime behaviors described in
the DFDD. These documents can be found in the Software ModellDetailed Design Addendums
folder and are named by Chapter in accordance with the DFDD.

11.1.2 Activity/Data Flow Diagrams
A number of activity diagrams have been included in the software model. These diagrams are
used to illustrate the control flow and datastore relationships amongst various business processes.

Covansys Corp. 44 SPIRIT

DTSD
Rev. 3.0

I0/31/06

ad Clinic Acllv Illes

Data Model::
WAiliNG LIST

Prescreen Applicant

Data Model::
MEM BER

Data Model::
HOUSEHOLD

Data Model::

INCOMECONTACT

Gather Demographic
Informallon

Gather Income
Informallon

Data Model::
INCOMEITEM

Figure 11 -Sample Activity Diagram

The diagram in figure 8 is a small portion of the Clinic Activities diagram located in the
Activities section of the Dynamic View in the software model. This portion of the diagram
indicates that while prescreening an applicant, information may be written to the WaitingList,
Member, and Household tables. Subsequent to the prescreening the additional demographic
information may be collected which in Income information may be collected. If that is the case
then the income information is written to the IncomeContact and IncomeItem tables.

Additional activity diagrams can be found in the Activity section of the Dynamic View in the
Software Model. (Note that a number of activity diagrams were created before the use of the
Enterprise Architect modeling tool. These diagrams are being migrated into the tool and can be
found in the Activity Diagrams folder on the CD.)

11.1.3 Communication Diagrams
Communication diagrams are used to depict the navigation paths and interface relationships
across the various executables and libraries. These diagrams can be found in each package in the
Component View section of the Software Model and typically have the word 'Navigation' in the
diagram name.

Covansys Corp. 45 SPIRIT

DTSD
Rev. 3.0

cd PartlclpantLlslNavlgation.Cllnlc

frmPartlclpantLlst

Create New Member,
{prescreening = Full Control}

10/31/06

frmPrescreenApplicant

d'
0<,.oo\~
I ",,,~",""""..fu,"'"'" U.

DupsDetected \ -
Schedule ADpt Checked

frmPotentialDupllcates

Figure 12 -Sample Communication Diagram

Wlc. Wlndows.Partlclpant::

frmWaltingUstManager

Wlc. Window s.Ca lenda.::

frmSelectAppolnment

The sample diagram above indicates that the user interface that supports the prescreening activity
is invoked from the ParticipantList executable.

Covansys Corp. 46 SPIRIT

DTSD
Rev. 3.0

10/31/06

11.1.4 Sequence Diagrams
Sequence diagrams are used to indicate interaction and control flow between runtime objects.
These diagrams can be found in the each package in the Component View section of the Software
Model. Primary diagrams are referenced in the design addendum documents.

r."~k""""""''''~k1 r ' , ' l1'., , , ' "1

l~ ,
GenIMl'Ungu8ge"l8ngu8ge2'OO"'lIPOno.~

~

PJ8""nc» end How104..,.,8bou1 we from
RtIIet8neeDietloMrr

~oad YIICC8t<tgOry"""iP.Itic:'P8nlS.IYi~Ag'

~(looIII"UI'IIcipelity).CounIy.S.rvioeSite"nd I
R81DUf1:18 ng S~.ms.lYioe.nt
hilt!.- <M1.ult..te from Stat8Profil,

i ''''''-'M' SI

~

.Vf\""""..o."""'''''''''''''''''Ti'''''OCOo-'~)
: BooI..".. V8nf\'W'i".iIlCliI8"8twicSt8I...cocs.,daI8CWB,nn,"-8V0C00cum8n1}

i y ~
.L."-~-' '-l : 10I'Il1~1 BooI..,.- V."¥N8ilingLi.CnI.".rCSIlI""COO'.dal.Of8iIlh."" ~.nt)

::;.'":""'''. ,I L.mm..u!~.~,.,~k~~.'!'!~,~~~~~mum i .! r
, TI\I8 ,,10bepuConWIIUII>gL'. .

r.m...mmmm..humnuf"m m.muh..mm1f

~:::~on~::;;''''''IM'''I'1 ! j,.,.dat.Of8iIltl' , " '

. 10011"')S,!,ng-S..lCnFolOuplic:8I.1(I",.."IIINI d...0faiIlh) !
P.llic:'pentLi..I8 S..~olOup4'cal""..N8m..fI CMlItO'8I1th'

. ,, ,
IOM,n,)PertiopenIUlllt,m..S..~orOuplical.I(I..N8 lIIII...IM.d8I.OI8Irthl, .

j

~

j
~

P,,,.,,~"'''m ..'" rr! ~..-~~~1~.!!~-~!---..-.....---...--...
, ' n ," "" "" .,

j ~~T<!~~'~~~~!~: j !
! (P.".cip8n1L...It.m..CO ..01 P''''ci~"llj.ltemll()! ! !

1=, I 1 I

i s AppI'c.tn1(~mbtol.iu.hoJd.i1EIIC'_V.ryBt8'..F..di I ! !
i i ~~.;;~.:~

~

,.':',:::'::;m..' "'''. "1'1 !
: : S AppllC8nl(me!'nbel.ho...holel..tElICI_Iye F..dingl

i i Y "1'
: : 10000ine)Mlmber.S.veAppliC8n1lmembe'.hohold.itExchlliIyB,..tIf..ding)

i i ! ~

L~~~ ..i'~mm !m..'~"_mmr.m.~mmm...
1

. . .
: ifAdOAno,,,-,HI)lII8hOldMlmbe,!: :. I I .. , , .I I . I, . , I
: INoE_ploon1Bool,,"-: : :

: V.ri~ili~L.i.cnlen'fwleSI"""---: -n :
: deleOl'Boo1nnn...oc::ooeumlnq:. :
i

~

i ~~",:;C:~""..., ~6
: : daI8OtBilln,,..,,,OcO,,CUII'Ilnll :
, 'IOfIILineIBool..n:- I! : V'~,rVw.illngLI.Cl'it.n'fwieSI"U8Cod8.! · 0
: ': d8..OfB'rln.noa:Jowm.nI\: :
: : : BooI..,,:-: I
: : : V'rilyWltllingli.cn~'~'fwieSt.lUICode.
: : : deII0l8.1tt't.I\fI.vOCOocumlnl)

i !
. ~. :~~~.;;7~~,;---m--ij ~m m..

I TI\Ie II 10 b8 put on

! ; W.'II""i'lI.u.uumu uuun.! ! !

Figure 13 -Sample Sequence Diagram

Covansys Corp. 47 SPIRIT

DTSD
Rev. 3.0

10/31/06

The sequence diagram above describes the runtime interactions of the software components that
are needed to support the prescreening activity.

11.1.5 Class Specifications
Class specifications are used to provide detailed instructions in regard to construction of classes.
These specifications are used ensure that the class provides the properties, methods, and events
needed to collaborate with other software objects as expressed in the aforementioned diagrams.
These diagrams can be found in each package in the Component View section of the Software
Model.

11.1.6 Deployment Diagrams
Deployment diagrams are used to describe the target environment and dependent relationships of
the various software components. These diagrams can be found in the Deployment View section
of the Software Model.

11.2 Data Modeling
The data model is documented using Power Designer and is published in HTML format. It
contains the entity relationship and detailed table definitions for the underlying data model. This
includes but is not limited to diagrams depicting relationships, detailed table (and view)
specifications citing data types and lengths as well as table/column usage descriptions,
constraints, stored procedures, and triggers.

12 Design Patterns and Practices
A numberof designpatternsandprogrammingpracticesare to be followedduringthe
development lifecycle of the project. The following sections document these patterns and
practices. In all cases the coding practices outlined in the VB.NET Coding Guidelines document
guide supersede syntax and formatting example code provided in this document. All the source
code contained in this document can be found in the prototype solution named SPIRITNAV
located in the Subversion repository. The SPIRITNAV solution is collection of projects used to
illustrate the architecture and code that will be used during software construction. It is not meant
to replace design level documentation and is superseded by any future documentation provided
by the design team.

12.1 User Interface Layer
Windows forms will be used to interact with the user. Forms will be implemented as either
windows or dialogs. The BPDS Windows VI Guidelines document will be used as the basic
standard upon which all Spirit user interfaces will be constructed. Any exceptions to these
guidelines are noted below.

12.1.1 Windows
All Windows should inherit from CVNS.BPDS.Windows.Forms.Form.
The following property settings will be applied to all windows unless otherwise stated.

Covansys Corp. 48 SPIRIT

FormBorderStyle FixedSingle
StartPosition CenterScreen
MinimizeBox True
AcceptButton [the accept/default button for the form]

DTSD
Rev. 3.0

10/31/06

HaloColor
CancelButton

System.Drawing.SystemColors.Highlight

the cancel button for the form

All other properties of windows will be left to their default values unless otherwise stated.

12.1.2 Dialogs
All Dialogs should inherit from CVNS.BPDS.Windows.Forms.Form.
The following property settings will be applied to all dialogs unless otherwise stated.

All other properties of dialogs will be left to their default values unless otherwise stated.

Windows and Dialogs will be invoked by first instantiating an instance of the form and then
invoking its ShowO or ShowDialogO method. Once the form is no longer needed it's DisposeO
method is to be invoked.

Dim dIg As New Wic.UI.Common.SelectLocation
dlg.ShowDialog()
dIg.Dispose ()

The following example illustrates the techniques that are to be used when exchanging data
between interfaces. In response to the menu being clicked, we set the dialog's AppointmentId
property and update the list item's OnPremisesTime.

Private Sub miMarkApptKept_Click(ByVal sender As System. Object, ByVal e As
System. EventArgs) Handles miMarkApptKept.Click

Me.Cursor = Cursors.WaitCursor

Dim dIg As New frmMarkApptKept
Dim ParticipantListItems As ParticipantListItems
Dim SelectedRowIndex As Integer
SelectedRowIndex = Me.dgParticipantList.CurrentCell.RowNumber
ParticipantListItems =Me.dgParticipantList.DataSource
dlg.ApptId a ParticipantListItems.Item(SelectedRowIndex + 1) , grid is 0 based
Me. Cursor = Cursors.Default

If dlg.ShowDialog() = DialogResult.OK Then
, update the on premises time of the participant in the collection
ParticipantListItems.Item(SelectedRowIndex + l).OnPremisesTime .

dlg.OnPremisesTime 'grid is 0 based
End If

dIg. Dispose ()
End Sub

During construction, if an interface invokes another interface that has not been constructed yet the
developer must "stub in" and comment out the invocation. It will be the responsibility of the same
developer to uncomment this code when the interface becomes available.

12.1.3 Passing Data between Interfaces
Interfaces will occasionally invoke or interact with other interfaces. Calling interface should
provide as much relevant data as possible to minimize the round-trip interaction of the interface
being called. This should be accomplished by having the interfaces provide properties that can be
used to exchange information. Consider the following scenario. While saving a new appointment,

Covansys Corp. 49 SPIRIT

AcceptButton [the accept/default button for
the form 1

CancelButton [the cancel button for the forml

DTSD
Rev. 3.0

I0/31/06

a confirmation dialog is displayed. The information is packaged into an Appointment object
which is then passed to the confirmation dialog via it's Appointment property. Upon confirming
the Appointment the confirmation dialog then invokes the AddAppointment method of the
CalendarServicesAgent. Similarly, when selecting to view a participant's folder the participant
list application will invoke the participant folder application passing the ParticipantId as an
argument of the invocation.

12.1.4 Controlling the Application Cursor
Most applications at some point perform processing that requires the user to wait for a short
period of time. When this occurs the application changes the mouse pointer (also referred to as
the cursor) to the Wait Cursor thereby blocking input &omthe user, once the application has
finished the aforementioned processing it changes the cursor back to the Default. Manipulation of
the cursor should only be done within an event processing procedure, not within routines that are
called by the event processing procedures or within class methods. Cursor control is clearly a user
interface paradigm and must remain in the user interface layer as close to the interaction point as
possible. Placing cursor control in reusable routines may sound like a good idea but keep in mind
you cannot ensure that the routine will not be used in a situation where cursor control in either not
appropriate, or is already being performed by the calling procedure.

Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnSearch.Click

Me.Cursor= System.Windows.Forms.Cursors.WaitCursor

, Do some stuff. call some class methods. etc.

Me.Cursor = System.Windows.Forms.Cursors.Default
End Sub

Interfaces should display the wait cursor any time the application must seize control from the user
for a noticeable period of time. For example, it would be appropriate the display the wait cursor
while retrieving a list. It would not be appropriate to display the wait cursor while setting a
member variable in the click event procedure of a checkbox as this operation is not noticeable to
the user.

12.1.5 Controlling Application Focus
Most applications will place the focus on the first control in error when some type of business
rule violation occurs. This functionality is provided by the default exception handler provided the
tag property of the controls point to the business object property that it represents.

Me.txtLastName.Tag = "LastName"

12.1.6 Populating DataGrid Controls
Displaying data in a datagrid control can be accomplished using helper routines provided by the
CVNS.BPDS framework. Below is an example that attaches an instance of the
ParticipantListItems collection class to a datagrid control. The example uses the
AddColumnToTableStyle shared method of the GuiUtils class to define the column to property
mapping of the objects in the collection. (Note that AddCheckboxToTableStyle and
AddComboboxToTableStyle are also provided.)

Private Sub AddClinicSearchColumnsToGrid()

Dim t As New System.Windows.Forms.DataGridTableStyle

Covansys Corp. 50 SPIRIT

DTSD
Rev. 3.0

10/31/06

t.RowHeadersVisible = False

t.MappingName = "ParticipantListItems"
GuiUtils.AddColumnToTableStyle(t, "HouseholdID", "Household ID", 100)
GuiUtils.AddColumnToTableStyle(t, "StateWicID", "State WIC ID", 100)
GuiUtils.AddColumnToTableStyle(t, "LastName", "Last Name", 200)
GuiUtils.AddColumnToTableStyle(t, "FirstName", "First Name", 100)
GuiUtils.AddColumnToTableStyle(t, "MiddleInitial", "MI" , 20)

GuiUtils.AddColumnToTableStyle(t, "DateOfBirth", "Date of Birth", 100, "MM/dd/yyyy")
GuiUtils.AddColumnToTableStyle(t, "WICStatus", "WIC Status", 100)

Me.dgParticipantList.TableStyles.Add(t)
Me.dgParticipantList.AllowSorting = True

End Sub

Subsequent to setting up the datagrid as depicted above the control is then bound to the collection
as follows:

Me.dgParticipantList.DataSource = oParticipantListItems

All datagrids are to be configured programmatically as depicted above. The IDE designer should
not be used to configure a datagrid control.

12.1.7 Providing Sorting and Selection Capability for DataGrid
Controls

To enable sorting by columns on a data grid declare 2 member variables that will be store the
current sort column and direction.

Private _SortDirection As Object
Private _SortColumn As String

Next, set the AllowSorting property of the grid to True. For consistency sake this property should
be set immediately after the columns are added to the date grid.

Private Sub AddClinicSearchColumnsToGrid()

Dim t As New System.Windows.Forms.DataGridTableStyle
t.RowHeadersVisible = False

t.MappingName = "ParticipantListItems"
GuiUtils.AddColumnToTableStyle(t, "HouseholdID", "Household ID", 100)

GuiUtils.AddColumnToTableStyle(t, "StateWicID", "State WIC ID", 100)
GuiUtils.AddColumnToTableStyle(t, "LastName", "Last Name", 200)
GuiUtils.AddColumnToTableStyle(t, "FirstName", "First Name", 100)
GuiUtils.AddColumnToTableStyle(t, "MiddleInitial", "MI" , 20)
GuiUtils.AddColumnToTableStyle(t, "DateOfBirth", "Date of Birth", 100, "MM/dd/yyyy")
GuiUtils.AddColumnToTableStyle(t, "WICStatus", "WIC Status", 100)

Me.dgParticipantList.TableStyles.Add(t)
Me.dgParticipantList.AllowSorting - True

End Sub

Finally, process the MouseUp event of the datagrid using the shared SortDataGridO method of
the GuiUtils class in CVNS.BPDS framework. Use the HitTestInfo to determine if a column
heading or row was selected. Notice that if the column heading was not selected, we default to
selecting the row containing the current [selected] cell.

Private Sub SelectRow(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles dgParticipantList.MouseUp
Dim pt = New Point(e.X, e.Y)
Dim hti As DataGrid.HitTestInfo = sender.HitTest(pt)

If hti.Type = DataGrid.HitTestType.ColumnHeader Then
GuiUtils.SortDataGrid(Me.dgParticipantList,

Me.dgParticipantList.TableStyles.Item(O) .GridColumnStyles.Item(hti.Column) .MappingName,

Covansys COrp. 51 SPIRIT

DTSD
Rev. 3.0

10/31/06

_SortColumn.
_SortDirection)

Else
SelectRow ()

End If
End Sub

Private Sub SelectRow()

dgParticipantList.Select(Me.dgParticipantList.CurrentCell.RowNumber)

Dim oParticipantListltem As ParticipantListltem
oParticipantListltem =

CType (Me.dgParticipant List.DataSo urce. item (Me.dgParticip antList.CurrentCell.RowNumber) ,
ParticipantListltem)

With oParticipantListltem
Me.lblGenderValue.Text = .Gender
Me.lblWicStatusValue.Text = .WicStatus

GuiUtils.SetLabelTextAsFormattedDate(Me.lblTerminationDateValue,
.TerminationDate)

GuiUtils.SetLabelTextAsFormattedDate(Me.lblCertEffValue, .CertStartDate)
GuiUtils.SetLabelTextAsFormattedDate (Me.lblCertEndValue , .CertEndDate)

End With
End Sub

12.1.8 Other Data Bound Controls
All data bound controls are to be configured programmatically. The IDE designer should not be
used to configure a data bound control.

12.1.9 Using Label Controls to Display data elements
Throughout the applications there a several instances where a label control is used to display data
in a read-only fashion. When this is the case the foreground color of the label text is to be set to
System.Drawing.SystemCo10rs.Highlight.

12.1.10 Third Party Tools
The NetAdvantage Tools from Infragistics will be used to augment the .NET windows forms
controls. Several controls have been identified and approved for use within the software.

· The UltraMaskedEdit control is to be used when the interface requires that the values
being entered must be formatted in a specific fashion. (Le Phone numbers, numbers only,
restrictive entry)

· The UltraCalendar Combo control is to be used when the interface requires the user to
either enter or select a date.

. The UltraDayView control is to be used when displaying daily appointments. Note this
control requires the use ofUltraCalendarInfo and UltraCalendarLook controls.

· The UltraMonthViewSingle control is to be used when displaying a summary month of
appointments. Note this control requires the use of UltraCalendarInfo and
UltraCalendarLook controls.

· The UltraCalendarInfo control is to be used as the CalendarInfo source for the
UltraDayView and UltraMonthViewSingle controls.

· The UltraCalendarLook control is to be used as the CalendarLook source for the
UltraDayView and UltraMonthViewSingle controls.

Covansys Corp. 52 SPIRIT

DTSD
Rev. 3.0

10/31/06

· The UltraButton control is to be used when a image must be displayed on the button's
surface. In order to set the image the button's Appearance.Image property must be set
accordingly.

Any additional controls used from this toolkit will require approval from the Spirit Project
Application Architect.

12.1.11 Working with the Calendar Controls
As stated above, the calendar controls are used in an interrelated fashion. A number of steps must
be performed to establish the proper relationships and populate the controls. Once these are
established the interaction between the user and the controls is automatically synchronized.

For an example using the UltraDayView, UltraMonthViewSingle, UltraCalendarInfo, and
UltraCalendarLook controls please refer to the form frmScheduleHouseholdAppt in the
Appointments project in the SPIRITNAV solution.

12.2 Business Service Layer
The Business Services Layer will be implemented as a number of small libraries based on
functional responsibilities, as well as cohesion and collaboration relationships. Within these
libraries a mixture of business entity and business workflow classes will be defined.

12.2.1 Entities
Business entity classes are templates used store and manage stateful information. These classes
are derived from CVNS.BPDS.DataAccess.BusinessObject and
CVNS.BPDS.DataAccess.BusinessObjectCollection and as such inherit all the necessary
inuastructure to interact with the a database helper class. Classes derived from BusinessObject
represent row level information. Classes derived uom BusinessObjectCollection provide strongly
typed collections of classes derived from BusinessObject. Most entity classes will map to a table
or view within the database (e.g. ParticipantListItem, VendorListItem). Some classes will be
provided as a convenience for organizing and manipulating related information (e.g. Person,
Height, and Weight). In general, these classes should limit there functionality encapsulated
related data and any relational rules associated with that data.

The typical business entity class derived from BusinessObject will aggregate a field map
collection by utilizing a shared method of a corresponding mapping class derived uom
CVNS.BPDS.MappingBase as illustrated below.

Public Class ParticipantListItemMapping
Inherits Base.MappingBase

Public Shared Function GetMappings() As FieldMappings
GetMappings = New FieldMappings
With GetMappings

.TableName = "V_PARTICIPANT_LIST"

.Add(New FieldMapping("StateWicID", "STATEWICID", True, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, B»

.Add (New FieldMapping ("HouseholdID", "HOUSEHOLDID", False, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, B»

.Add(New FieldMapping("LastName", "LASTNAME" , False, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, 25»

.Add(New FieldMapping ("FirstName", "FIRSTNAME", False, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, 20»

Covansys COrp. 53 SPIRIT

DTSD
Rev. 3.0

10/31/06

.Add(New FieldMapping ("MiddleIni tial", "MIDDLEINITIAL", False, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, 1»

.Add(New FieldMapping ("DateOfBirth", "DATEOFBIRTH", False, "Date",
CVNS.BPDS.DataAccess.DataType.DateTime»

.Add(New FieldMapping("WicStatus", "WICSTATUS", False, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, 135))

.Add (New FieldMapping ("Gender", "GENDER", False, "String",
CVNS.BPDS.DataAccess.DataType.VarChar, 20»)

.Add (New FieldMapping ("Terminated", "TERMINATED", False, "Boolean",
CVNS.BPDS.DataAccess.DataType.VarChar, 1))

.Add(New FieldMapping("CertStartDate", "CertStartDate", False, "Date",
CVNS.BPDS.DataAccess.DataType.DateTime»

.Add (New FieldMapping ("CertEndDate", "CERTIFICATIONDUEDATE", False, "Date",
CVNS.BPDS.DataAccess.DataType.DateTime)

.Add(New FieldMapping("TerminatiOnDate", "TERMINATEDDATE" , False, "Date",
CVNS.BPDS.DataAccess.DataType.DateTime»

End With
End Function

End Class

Public Class ParticipantListItem
Inherits BusinessObject

Public Sub New()

MyBase . New ()

Ini tObj ect ()

End Sub

Protected Overrides Sub InitObject()
Me.FieldMappings = Mapping.ParticipantListItemMapping.GetMappings()
Me. FieldValues.Load(Me.FieldMappings)

_HouseholdID = New String("")
_StateWicID = New String("")
_LastName = New String("")
_FirstName = New String("")
_MiddleInitial = New String("")
_Gender = New String("")
_WicStatus = New String("")
_Terminated = False

End Sub

End Class

Notice the FieldMappings and FieldValues properties of the ParticipantListItem class are set in
the InitObject routine. This is required of all classes that represent persisted data. For
organizational purposes field mappings will be provided via specialized mapping classes.

The corresponding collection class for ParticipantListItem is named ParticipantListItems and is
derived from BusinessObjectCollection. This class need only implement the default Item property
in order to provide the strongly typed interface.

Public Class ParticipantListItems
Inherits BusinessObjectCollection

Default Public Shadows Property Item(ByVal index As Integer) As ParticipantListItem
Get

Return CType(MyBase.Item(index) , ParticipantListItem)
End Get

Set (ByVal Value As ParticipantListItem)
MyBase.Item(index) = Value

End Set

End Property

End Class

Covansys COrp. 54 SPIRIT

DTSD
Rev. 3.0

10/31/06

Since the BusinessObjectCollection class is derived from ArrayList and implements a sort
method using an internal comparer class, classes derived from this class can be directly attached
to databound enabled controls like the DataGrid. For more information pertaining to attaching
classes derived from BusinessObjectCollection and DataGrid controls please refer to the User
Interface section of the document.

Private Sub GetData()

Me. Cursor = System.Windows.Forms.Cursors.WaitCursor
Try

Dim oParticipantListltems As ParticipantListltems
ClearGrid ()

AddClinicSearchColumnsToGrid()

oParticipantListltems = _oPSA. Search (Me.txtStateWicID.Text,
Me. txtHouseholdID. Text , Me.txtLastName.Text.Trim.ToUpper, Me.txtFirstName.Text.ToUpper)

Me.dgParticipantList.DataSource . oParticipantListltems

If oParticipantListltems.Count = 0 Then
MsgBox(MSG_NO_MATCHES, MsgBoxStyle.Information, "Participant List")

End If

Catch ex As Exception
MsgBox(ex.Message)

End Try
Me. Cursor = System. Windows. Forms. Cursors. Default

End Sub

12.2.2 Components

12.2.3 Workflows
Business workflow classes are templates used to provide interfaces to complex interactions
between business entity objects. These classes are derived from
CVNS.BPDS.DataAccess.BusinessManagerBase. An example of a workflow would be the
ParticipantSearch class. As illustrated below, this class provides interfaces to perform specific
searches (only I is included in the example). In turn, these strongly defined search methods call a
private generic search which utilizes entity and data access objects to invoke the search and return
the result.Noticethat the publicmethodSearchStatewideperformsthe high-leveleditsto
ensure the parameters comply with the stated rules for using this method. In this case, the
consumer must provide at least one valued parameter in order to invoke the search.

Public Function SearchStatewide(ByVal programid As String, _
ByVal statewicid As String, _
ByVal householdid As String, _
ByVal lastname As String, _
ByVal firstname As String, _
ByVal middleinitial As String, _
ByVal dateofbirth As String,
ByVal ssn As String, _
ByVal agencyid As String) As ParticipantListItems

Dim oParticipantListltems As New ParticipantListltems
Try

, ensure we get at least one of the optional arguments

If householdid.Length = 0 And _
statewicid.Length = 0 And _
lastname.Length = 0 And _
firstname.Length = 0 And _
middleinitial.Length = 0 And _
dateofbirth.Length = 0 And _
ssn.Length = 0 And _
agencyid.Length = 0 Then
, error no search criteria has been provided
Throw New Exception("No criteria specified. Operation cancelled.")

End If

Covansys COrp. 55 SPIRIT

DTSD
Rev. 3.0

10/31/06

oParticipantListItems Search (programid, _
statewicid,

householdid,

lastname,

firstname,

middle initial ,

dateofbirth,

san,
agencyid,
"",
1111)

Catch ex As Exception
Throw ex

End Try
Return oParticipantListItems

End Function

The private method Search is coded to support 4 strongly defined public search methods. Notice
that this method also performs edits to ensure that required criteria of all search types is provided.
As stated earlier, this method uses an instance of the SqlServerHelper class and Filters class to
return a ParticipantListItems object. (For additional information in regard to the SqlServerHelper
and Filters classes please refer to the Data Access Layer section ofthis document.)

Private Function Search(ByVal
ByVal
ByVal
ByVal
ByVal
ByVal
ByVal
ByVal
ByVal
ByVal
ByVal

Dim oParticipantListItems
Try

programid As String, _

statewicid As String, _
householdid As String,

lastname As String, _
firstname As String, _
middleinitial As String,
dateofbirth As String,
ssn As String, _
agencyid As String,
clinicid As String,
apptdate As String) As ParticipantListItems
As New ParticipantListItems

If _oDBHelper Is Nothing Then
Throw (New Exception("DBHelper object is nothing. Operation cancelled."»

End If

, ensure we get the required arguments
If programid.Length = a Then

Throw New Exception("ProgramID is required.Operationcancelled.")
End If
, Add a filter for each of the search criteria.
Dim oFilters As New Filters

If programid.Length > a Then
oFilters.Add(New Filter("ProgramID", OperatorType.otEquals, programid»

End If

If householdid.Length > a Then
oFilters.Add(New Filter("HouseholdID", OperatorType.otLike, householdid +

"%"))
End If

If statewicid.Length > a Then
oFilters.Add(New Filter("StateWicID", OperatorType.otLike, statewicid +

"%"»
End If

If lastname.Length > a Then
Dim oChildFilters As New Filters
, do a soundex and like or'd together to
oChildFilters.Add(New Filter("LastName",

get all possible matches
OperatorType.otSoundsLike,

lastname))

oChildFilters.Add(New Filter("LastName", OperatorType.otLike, lastname +
"%"), ComparerType.ctOr)

oFilters.Add(oChildFilters)
End If

If firstname.Length > a Then
, do a soundex and like or'd together to get all possible matches
Dim oChildFilters As New Filters

Covansys Corp. 56 SPIRIT

DTSD
Rev. 3.0

10/31/06

oChildFilters.Add(New Filter ("FirstName", OperatorType.otSoundsLike,
firstname))

oChildFilters.Add(New Filter ("FirstName", OperatorType.otLike, firstname
+ "t"), ComparerType.ctOr)

oFilters.Add(oChildFilters)
End If

If middleinitial.Length > 0 Then

oFilters.Add(New Filter("MiddleInitial", OperatorType., otEquals
middleini tial))

End If

If dateofbirth.Length > 0 Then
If IsDate(dateofbirth) Then

oFilters.Add(New Filter ("DateOf Birth", OperatorType.otEquals,
(CType(dateofbirth,Date»»

Else
, error no search criteria has been provided
Throw New Exception("Invalid date of birth date format. Operation

cancelled.")
End If

End If
If agencyid.Length > 0 Then

oFilters .Add (New Filter ("AgencyID", OperatorType. otEquals, agencyid))
End If

If clinicid.Length > 0 Then
oFilters.Add(New Filter("ClinicID", OperatorType.otEquals, clinicid»

End If

If apptdate.Length > 0 Then
If IsDate(apptdate) Then

oFilters.Add(New Filter("ApptDate", OperatorType.otEquals,
(CType(apptdate, Date»)))

Else

, error no search criteria has been provided
Throw New Exception("Invalid appointment date format. Operation

cancelled.")
End If

End If
, instantiate the target collection and invoke the search.
_oDBHelper.Search(Mapping.ParticipantListItemMapping.GetMappings,

oParticipantListItems, oFilters)
Catch ex As Exception

Throw ex

End Try
Return oParticipantListItems

End Function

12.3 Web Service Interface Layer
Web service interfaces will be implementation and platform agnostic. Method arguments will be
provided as base data types (string, date, integer, etc.) as defined in the W3C specification. Note
that xml inputs and outputs xml will be typed as strings. This design pattern allows for future
reuse of these services by a variety of consumer applications. Note that since the aforementioned
xml is only used by the underlying framework to stream serialized objects between the consumer
and the service there is no need at this time to a schema definition. Applications and components
within this solution will be provided with a framework that will provide tools to translate XML to
and from solution specific class types. Under no circumstances should any component construct
xml "on-the-fly". Also, all web services return data as strings. These returned string must be
processed with the translator method ReadXMLResponse.

Web services will provide interface wrappers around business workflows and entities. In the
example provided below the SearchStatewide method of the ParticipantServices web service
provides a strongly defined search interface. In fact, this search is very similar to the
SearchStatwide interface provided by the workflow class ParticipantSearch. Upon

Covansys Corp. 57 SPIRIT

DTSD
Rev. 3.0

10/31/06

examination of this web method we can see that it also uses a generic private Search routine that
in turn uses the aforementioned ParticipantSearch workflow to invoke the actual search.

Notice that an instance of the SqlServerHelper class is created here and passed to the workflow
object. This is done because the application (in this case the web service) is responsible for
knowing where the data store is located. The workflow object returns an instance of the
ParticipantListItems collection class. The ParticipantListItems collection is then serialized to xml
and wrapped in a response envelope by an instance of the Translator class. (More information on
SQLServerHelper, Filters, and the Translator class can be found in the Data Access Layer section
of this document.)

<WebMethodC) > _

Public Function SearchStatewideCByVal programid As String, _
ByVal statewicid As String, _
ByVal householdid As String, _
ByVal lastname As String, _
ByVal firstname As String, _
ByVal middleinitial As String, _
ByVal dateofbirth As String,
ByVal ssn As String, _
ByVal agencyid As String) As String

Return SearchCParticipantSearchTypeEnum.pstStatewide,
programid, _
statewicid,
householdid,
lastname,
firstname,
middleinitial,
dateofbirth.
ssn, _
agencyid,
1111

,
1111)

End Function

Private Function SearchCByVal st As ParticipantSearchTypeEnum,
ByVal programid As String, _
ByVal statewicid As String, _
ByVal householdid As String, _
ByVal lastname As String, _
ByVal firstname As String, _
ByVal middleinitial As String, _
ByVal dateofbirth As String,
ByVal ssn As String, _
ByVal agencyid As String,
ByVal clinicid As String,
ByVal apptdate As String) As String

Dim EndDttm As New DateTime
Dim StartDttm As New DateTime
Dim s As New StringC)
Dim oTranslator As New Translator

Dim obj As Object
StartDttm = Now
Try

, intantiate a SqlServerHelper that we can use to interact with the database.
Dim oParticipantSearch As New Participant Search
Dim oParticipantListItems As New ParticipantListItems
With oParticipantSearch

, hand off the helper to the object and invoke the search
If st - ParticipantSearchTypeEnum.pstStatewide Then

. Limit the result set to no more than 100 rows.

oParticipantListItems - .SearchStatewide(programid.

statewicid.

househo1did.

lastname.

firstname.

middleinitial.

Covansys COrp. 58 SPIRIT

DTSD 10/31/06
Rev. 3.0

dateofbirth,

san,
agencyid)

Elself st = ParticipantSearchTypeEnum.pstClinic Then
, Limit the result set to no more than 100 rows.

oParticipantListltems = .SearchClinic(clinicid,
programid,_
statewicid,

householdid,

lastname,

firstname, _
middleinitial,

dateofbirth,

ssn)
Elself st = ParticipantSearchTypeEnum.pstOnSite Then

, no limit no the resultset.
oParticipantListltems = .SearchOnSite(clinicid,_

programid, _
statewicid,

householdid,

lastname,

firstname, _
middleinitial,

dateofbirth,

ssn)

Elself st = ParticipantSearchTypeEnum.pstDailyAppointments Then
, no limit no the result set.

oParticipantListltems = .SearchDailyAppointments(clinicid, _
apptdate, _
programid, _
statewicid,
householdid,
lastname,

firstname, _
middleinitial,

dateofbirth,

ssn)
End If

End With
oParticipantSearch = Nothing
obj a oParticipantListltems

Catch ex As Exception
obj = ex

Finally
EndDttm = Now

Dim ts As New TimeSpan(EndDttm.Ticks - StartDttm.Ticks)
, translate the object to xml and wrap it in a response envelope
oTranslator.WriteXMLResponse(obj, _

s, _
BuildTransactionld(Me.User.ldentity.Name) ,
ts.Milliseconds.ToString)

oTranslator = Nothing

End Try
Return s

End Function

12.4 Web Service Agent Layer
Some web services will have corresponding client side agents. These agents wrap client-side web
service proxy interface stubs providing the ability to route requests to either the remote web
service or the local database (via the workflow objects) based on the connectivity state of the
application. This capability is being provided as part of the "smart client technology" project
initiative. Classes that act as client-side agents will implement the IServiceAgent interface in
order to ensure that the agent provides a property that consumers can use to indicate the current
online/offline state of the application.

Covansys Corp. 59 SPIRIT

DTSD
Rev. 3.0

10/31/06

The following example &omthe ParticipantServicesAgent class illustrates the use of a client side
agent. Notice the use of the class' Online property to determine the request routing. When on
linethe requestis routedto the webservice.Offline,the requestis servicedlocallyusingcode
that is very similar to that of the corresponding web service.

Public Function SearchStatewide(ByVal programid As String,

ByVal statewicid As String, _
ByVal householdid As String, _
ByVal lastname As String, _
ByVal firstname As String, _
ByVal middleinitial As String,
ByVal dateofbirth As String,
ByVal ssn As String, _
ByVal agencyid As String) As ParticipantListItems

Return Search (ParticipantSearchTypeEnum.pstStatewide,
programid, _
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

ssn,
agencyid,
"",
1111)

End Function

Private Function Search(ByVal st As ParticipantSearchTypeEnum,

ByVal programid As String, _
ByVal statewicid As String, _
ByVal householdid As String,
ByVal lastname As String, _
ByVal firstname As String, _
ByVal middleinitial As String, _
ByVal dateofbirth As String,
ByVal ssn As String, _
ByVal agencyid As String,
ByVal clinicid As String,
ByVal apptdate As String) As ParticipantListItems

Dim oParticipantListItems As New WICLIB.ParticipantListItems
Dim sTransactionid As String
Dim sTimespan As String
If OnLine Then

Try
the data from the web service

As String

ParticipantSearchTypeEnum.pstStatewide
_oPS.SearchStatewide(True,

programid, _
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

san,
agencyid)

ElseIf st = ParticipantSearchTypeEnum.pstClinic Then
s = _oPS.SearchClinic(True,

clinicid,

programid,_
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

ssn)

get
Dim s
If st

s
Then

Covansys COrp. 60 SPIRIT

DTSD 10/31/06
Rev. 3.0

EIseIf st = ParticipantSearchTypeEnum.pstOnSite Then
s = _oPS.SearchOnSite(True,

clinicid,

programid, _
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

ssn)
EIseIf st = ParticipantSearchTypeEnum.pstDailyAppointments Then

s = _oPS.SearchDailyAppointments(True, _
clinicid,

apptdate,

programid, _
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

ssn)
End If

Dim oTranslator As New Translator

oTranslator.ReadXMLResponse(s, _
oParticipantListItems,
sTransactionid,
sTimespan)

oTranslator = Nothing
Catch ex As Exception

Throw ex

End Try
Else

, get the data from the local data store
Try

Dim oParticipantSearch As New ParticipantSearch
With oParticipantSearch

If st a ParticipantSearchTypeEnum.pstStatewide Then
oParticipantListItems a .SearchStatewide(programid,

statewicid,
householdid,
lastname,
firstname,
middleinitial,
dateofbirth,
san,
agencyid)

EIseIf st = ParticipantSearchTypeEnum.pstClinic Then
oParticipantListItems = .SearchClinic(clinicid,

programid, _
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

ssn)
EIseIf st = ParticipantSearchTypeEnum.pstOnSite Then

oParticipantListItems = .SearchOnSite(clinicid,
programid, _
statewicid,

householdid,

lastname,

firstname,

middleinitial,

dateofbirth,

ssn)
EIseIf st = ParticipantSearchTypeEnum.pstDailyAppointments Then

oParticipantListItems = .SearchDailyAppointments(clinicid,
apptdate,_

Covansys COrp. 61 SPIRIT

DTSD
Rev. 3.0

I0/31/06

programid. _
statewicid,
householdid,
lastname,

firstname,_
middleinitial,
dateofbirth,
ssn)

End If
End With

Catch ex As Exception
Throw ex

End Try
End If
Return oParticipantListItems

End Function

In either case, the agent returns an instance of the ParticipantListItems collection.

12.5 Data Access Layer
A runtime trust boundary is preserved between the Business Service Layer and the Data Access
Layer by using objects instantiated from the CVNS.BDPS.DataAccess Framework. By passing
the source and or target objects derived from CVNS.BPDS.BusinessObject or
CVNS.BPDS.BusinessObjectCollection as method arguments.

These runtime objects provide an abstracted object model to the data store allowing the developer
to work at the object level and avoid writing SQL associated with the basic CRUD (Create, Read,
Update, and Delete) operations. This object model provides a framework that supports the
majority of SQL queries that are typically written. (Note that the SqlServerHelper class derived
from DBHelper also provides a direct interface for executing [complex] SQL statements that are
beyond the capabilities of the current the object model.

12.5.1 SqlServerHelper and Filters
The Data Access Layer provides a framework of helper classes that can be used to interact with
the appropriate persistence mechanism (e.g. databases, files, etc.) The following illustrates using
the framework to retrieve a collection of ParticipantListItem objects where the participant's last
name starts with "NA" and first name starts with "B". Notice the mapping information of the
objects in the collection, the target collection, and the filter criteria are passed in as arguments of
the method invocation.

Dim oFilters As New Filters

oFilters.Add(New Filter("LastName", OperatorType.otLike, "NA\"»
oFilters.Add(New Filter("FirstName", OperatorType.otLike, "B\"»

Dim oList As New ParticipantListItems
oDBHelper.Search(Mapping.ParticipantListItemMapping.GetMappings, oList, oFilters)
Return oList

The Filters and Filter classes provide an object oriented interface that can be used to define the
criteria for the search. The Add method of the Filters collection class provides an optional
argument that can be used to define the and/or relationship of the filter being added. For example,
the following code would generate criteria to locate participants with a WIC status of infant or
child. (The default comparer is ComparerType .ctAnd)
Dim oFilters As New Filters
oFilters.Add(New Filter("WicStatus", OperatorType.otEquals, "I"»
oFilters.Add(New Filter ("WicStatus", OperatorType.otEquals, "C"), ComparerType.ctOr)

Covansys COrp. 62 SPIRIT

DTSD
Rev. 3.0

10/31/06

Dim oList As New ParticipantListItems

oDBHelper. Search (Mapping. ParticipantListItemMapping.Get Mappings, oList, oFilters)
Return oList

The Filters class supports a heterogeneous collection of Filter and Filters objects. This allows the
consumer to construct nested criteria. For example to locate all participants whose last name
sounds like 'pat' or starts with 'pat' and has a wic status of 'child' we would construct the
following Filters collection.

Dim oChildFilters As New Filters

, do a soundex and like or'd together to get all possible matches
oChildFilters.Add(New Filter("LastName", OperatorType.otSoundsLike, lastname))
oChildFilters.Add(New Filter ("LastName" , OperatorType.otLike, lastname + "'t"),
ComparerType.ctOr)
oFilters.Add(oChildFilters)

oFilters.Add(New Filter("WicStatus", OperatorType.otEquals, "C"»

Invoking the toString method of the this Filters object would return the following string:

(((soundex([lastname]) = soundex('PAT') or ([lastname]) like 'PAT%') and ([wicstatus] = 'C'»

Other basic CRUD (Create, Read, Update, Delete) operations are supported as well. For example
to retrieve, access, and save a specific item we would write the following code:

Dim oItem As New ParticipantListItem
Dim s As New String
, get the data

oItem.StateWicID = "00807111"

oDBHelper. Load (oItem)

make changes
s = oItem.LastName

oItem.LastName = s

, save changes

oDBHelper. Save (oItem)

Similarly, to delete the item we would use the following code.

oDBHelper.Delete(oItem)

12.5.2 Translator
The translator class implements methods that provide for the transformation of objects derived
from BusinessObject and BusinessObjectCollection to and from xml. These transformation
services rely on the FieldMappings contained in each object. Consider the following method from
the ParticipantServicesAgent class that uses an instatance of the Translator class to serialize the
ParticipantDemographics object in order to submit the information to the corresponding web
service.

Public Function SaveDemographics(ByVal pd As ParticipantDemographics) As String
Dim oTranslator As New Translator

Dim xml As String
Dim s As String
oTranslator. toXML (pd, xml)

s = _oPS.SaveDemographics(xml)
Return s

End Function

Covansys COrp. 63 SPIRIT

DTSD
Rev. 3.0

10/31/06

Likewise, the corresponding web service uses the fromXML method of the translator to
deserialize the xml back into a ParticipantDemographics object which is then used as an argument
of the Save method of the SqlServerHelper object.

Dim oPD As New ParticipantDemographics
oTranslator.fromXML(xml, oPD)
Dim oDBHelper As SQLServerHelper
oDBHelper= GetDBHelper(Me.User.Identity.Name)
oDBHelper.Save(oPD)

The Translator class also implements the WriteXMLResponse method which provides a wrapper
over the toXML method and is used by web service methods to format the response accordingly.

oTranslator.WriteXMLResponse(obj, s, BuildTransactionId(Me.User.Identity.Name) ,
ts.Milliseconds.ToString)

12.5.3 BusinessObject
The BusinessObject base class implements the infrastructure required to interact with the data
access helper classes provided within this framework. Classes derived from this class must
aggregate FieldMappings which provide the property to column mappings between the class and
the associate database table or view.

12.5.4 Field Mappings
Filed mapping classes contain class property to database column mappings.

12.5.5 BusinessObjectColiection
The BusinessObjectCollection class is derived from the .NET framework's ArrayList class and
provides a base class from which to derive strongly typed collections of classes derived from
BusinessObject.

12.6 XP Interface Compatibility
Each application that wants to use the Windows XP control set must have the control set readily
available and must use a manifest file to activate the set. The file must be named
[MyApp].exe.manifest where [MyApp] the name of the application's executable. The manifest
file must be in the same folder as the executable. Below is the corresponding manifest file for
ParticipantList.exe.

<?xml version="l.O" encoding="utf-8" ?>
<assembly xmlns="urn:schemas-microsoft-com:asm.vl" manifestVersion="l.O">
<assemblyIdentity

version="l.O.O.O"

processorArchitecture="X86"
name="ParticipantList"
type="win32"

/>
<description>ParticipantList</description>

<dependency>
<dependentAssembly>

<assemblyIdentity
type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"

processorArchitecture="X86"
publicKeyToken="6595b64144ccfldf"
language:"'*"

/>

Covansys COrp. 64 SPIRIT

DTSD
Rev. 3.0

10/31/06

</dependentAssembly>
</dependency>
</assembly>

Note that bolded infonnation must correspond with the associated application. In addition,
controls that support the "FlatStyle" property must be set to "System"

12.7 Reporting Component Architecture
A brief overview of the architecture behind the reporting system is needed to effectively convert
existing reports and build new reports.

12.7.1 Report Definitions
Report definitions are classes that define the report to be used in the application. They include
the name of the report, the report parameters, and the path to the report's RPT file (the Crystal
Reports report layout file - .rpt file extension).

Other types of report definitions derived from this base definition include a generic data-driven
report definition and more specific report definitions for reports using TTX files. A class
hierarchy of these classes is shown below.

Covansys Corp. 65 SPIRIT

DTSD
Rev. 3.0

10/31/06

All provided report definition classes are abstract, and each report used in the system should have
its own specifically implemented report definition class that inherits from one of these system
provided classes.

Covansys Corp. 66 SPIRIT

Report Definition
{abstract}

/Name: String
/Parameters: IReportParameter
lReportPath: String
...

New
New(String, String, IReportParameter)

l

Data Dliven Report Definition
{abstract}

/Data: Object
...

InitializeData
New
New(String, String, IReportParameter)
New(String, String, IReportParameter,Object)

l

TTXReport Definition
{abstract}

,..
InitializeData

New
New(String, String, IReportParameter}
New(String, String, IReportParameter,Object)

TTXQuery Report Definition
{abstract}

InitializeData

New

New{String, String, IReportParameter)
New(String, String, IReportParameter, Object)
...

DTSD
Rev. 3.0

10/31/06

12.7.2 Output Settings
Output settings are classes that define where the output of the report should go. Currently, three
output settings are provided by the reporting component: Print, Screen Viewer, and PDF Output
file. Each type of setting has specific properties that must be set to output the report properly.

Here is a class diagram showing the class hierarchy of the various output settings:

12.7.3 Report Engine
The ReportEngine class does all of the work of generating the report. At a minimum, it needs a
report definition specifYingwhat report to create. In this case, a default output setting will be
provided. Otherwise, it needs the defined output setting for where the report should be created.

Below is a diagram showing the ReportEngine class's public members and their relationship with
ReportDefinition and OutputSettings classes.

Report Definition
{abstract}

- ~ IOutput SettingsIReportDefinition-E- -

output Settings
{abstract}

12.7.4 Walkthroughs
This section goes step-by-step through the process of building the supporting report component
classes that will allow your application to quickly and easily begin using the component. The
examples in this section will extend from the beginning of the process to the end and will include

Covansys Corp. 67 SPIRIT

output Settings
{abstract}

I I I
File Output Settings Print Settings

{abstract}
Screen Viewer Settings

ICollate: Boolean

lDestinalionPaIh: String ICoples: Integer
lOulputDestinalion: OutputDestination

lOulputDestinalion: OulputDestinalion /Dupg: DuplexSelting
/Voewer: RepoltViewer

lOulputDestinalion: OutpulDeslinatoon
...

New lPaperOrientation: PaperOrientation New

New(String) lPrinIerName: String New(ReportVoewer)

ShowSaveOialog
'"

New
/ New(DuplexSetting, PaperOrientalion, String, Integer. Boolean}

ShowPriltDialog

PDFOutput Settings

lOulputfileFormat OulputflleFormal
...

New
New(String}

Report Engine

Object2DataSet(Object): DataSet
...

CreateRep ort(IRepo rtDefin itian)
CreateReport(lReportDefin itian, IFileOutputSettings}
CreateReport(lRep ortDefin itian, 10utputSettin gs)
CreateReport(IRep ortDefin itian, IPrintSettin gs)

CreateReport(lReportDefinition, IScreenViewerSettings}
...

.. -. -. ... - ---

DTSD
Rev. 3.0

10/31/06

specific code and screen shots. The Reports.Prototype solution has a project called
ReportingExample that includes working copies of these examples.

12.7.5 Design Reports
The first step in using the reporting component is to design the report. This includes creating a
TTX file to layout your report with and building the report in the Crystal Reports report designer.
If you are converting a report that has been designed using a TTX file, this step has already been
done for you. If the report you are converting connects directly to the database, treat this report
as a new report and build both the TTX and RPT files.

After designing the report, add the RPT and TTX files into a Visual Studio project folder. The
files should be placed in the same folder. Part of a screen shot below shows an RPT and TTX file
in the same folder.

B' ~ RPTs
~ ParticipantTransferHistDry.rpt

~ PartidpantTransferHistDry.ttx

12.7.6 Create Report Definitions
After the report has been designed, you must decide whether the application will already have the
data used in the report or not. The type of report definition depends upon this determination and
will be discussed momentarily.

12.7.6.1 Properties

Regardless of whether the application provides the data or not, your report definition class will
have the following properties: Name, ReportPath, Parameters, Data, and TTXTableMapping.
(Even though the data may not be provided by the application, the data will be retrieved before
the report is processed, which happens when the report definition and output settings are passed
to the ReportEngine class's CreateReport method.)

12.7.6.1.1 Name
The Name is simply the name of the report. This property is used primarily by the default screen
viewer output. It may also be used in custom screen viewers or in derived processing.

12.7.6.1.2ReportPath
The ReportPath is the full path to the RPT file. Because you should never hard-code a full path,
use a dynamic technique for obtaining the full path, such as using the
System.AppDomain.CurrentDomain.BaseDirectory path along with a relative path to the RPT
file. Using only a relative path will cause problems when outputting a report to the file system.

12.7.6.1.3 Parameters

Parameters for the report may be constants defined within the report definition or variables passed
to the report definition via the constructor or set explicitly, but they must be a part of the report
definition before the report can be processed. Report parameters are name, value pairs where the
name of the parameter must match the parameter name the report is expecting to receive. If the
names do not match, the report will assume the parameter was not given. (The report parameters
can be found in the Field Explorer, which only displays when viewing the RPT file and
displaying the Document Outline window. You can find this window in the menu by going to
View IOther Windows IDocument Outline.) Here is what parameters look like in the Field
Explorer:

Covansys Corp. 68 SPIRIT

DTSD
Rev. 3.0

10/31/06

':ieldExplorer __ _ ~_X
ctJ. II Database Fields
i:!:JX.1 Formula Fields

t-J (1) Parameter Fields

~ parReportName
lEI parReportStartDate

~ parReportHeading
lEI parUserName
lEI parReportStopDate

~ (:rn"n N..m~ Fi~lno::

12.7.6.1.4Data

Report Data is the data that the report will display. Most of the time, when an application will
provide the data, the data will be in the form of a collection, and when the data is retrieved ITom
the database, it will be in the form of a DataSet.

12.7.6.1.5 TTXTableMapping
The TTXTableMapping property refers to a statically created class that derives from the abstract
TTXTableMapping class. This table mapping class maps the name the report uses for the table to
the class name for the data being passed to the report. (This is assuming that the application has
the data to be used in the report. If the application does not have this data already and needs to
get the data IToma data source, the class maps the report's expected table name with the DataSet's
table name.)

The table mapping class also has a set of field mapping classes that map the fields the report
expects to receive with the properties of the class you pass the report as data. (Again, this
assumes the application has the data to be used in the report. If the application does not have this
data, this field mapping class maps the expected field names to DataTable column names.) The
table and field names the report expects to see can be found in the Crystal Reports Field Explorer,
as shown below.

I ~iel~Explorer_ __ ~ x
q II Database Fields

r-:J~ PartidpantTransferHistory_ttx

~ TransferDateTime

~ StateWICID
~ PartName
~ FromAgSS
~ ToAgSS
~ STAFFID

~ x.t Fnrm' d.. Fi..lrio::

This is what a completed, derived table mapping class looks like:

Covansys Corp. 69 SPIRIT

DTSD
Rev. 3.0

I0/31/06

Public Class ParticipantTransferHistoryReportMapping
Inherits TTXTableMapping

Public Sub New{}

MyBase .New{ "ParticipantTransferHistory_ttx",
"ParticipantTransferHistory"}

Dim FieldMappings{S} As TTXFieldMapping
FieldMappings{O} = New TTXFieldMapping{

"TransferDateTime", "TransferDateTime"}

FieldMappings{l} = New TTXFieldMapping{
"StateWICID", "StateWICID"}

FieldMappings{2} = New TTXFieldMapping{
"PartName", "ParticipantName"}

FieldMappings{3} = New TTXFieldMapping{
"FromAgSS", "FromAgency" }

FieldMappings{4} = New TTXFieldMapping{"ToAgSS",
"ToAgency" }

FieldMappings{S} = New TTXFieldMapping{"STAFFID",
"StaffID" }

Me.TTXFieldMappings = FieldMappings
End Sub

End Class

J2.7.6.2 Data Provided

If the application has the data to be used in the report, you will need to create a report definition
class that inherits from the TTXReportDefinition class. This class has the base implementation to
initialize the given report data based on the given mapping class so the report can readily use it.

Here is an example of a data-provided report definition class:

Covansys Corp. 70 SPIRIT

DTSD
Rev. 3.0

10/31/06

Public Class ParticipantTransferHistoryReportDefintion
Inherits TTXReportDefinition

, because of the way Crystal handles paths when saving
files to disk, the full path to the rpt file must be
specified.

Private Shared ReadOnly ReportPathConst As String

String.Concat(_
System. AppDomain. CurrentDomain. BaseDirectory, _
". .\Reports\RPTs\ParticipantTransferHistory.rpt")

Private Shared ReadOnly ParametersConst As _
IReportParameter() = _

{New ReportParameter ("parReportName", _
liMyTest Participant Transfer History Report"),

New ReportParameter("parReportStartDate",
DateTime.Now.Subtract(New TimeSpan(l, 0, 0, 0))),

New ReportParameter("parReportHeading", _
"Test Report Heading"), _

New ReportParameter("parUserName", "Jane Doe"),
New ReportParameter ("parReportStopDate",

DateTime.Now)}

Public Sub New()

MyBase.New(_
IIparticipant Transfer History Report", ReportPathConst,
ParametersConst, New ParticipantTransferHistoryItems)

MyBase.TTXTableMapping = New _
ParticipantTransferHistoryReportMapping

End Sub

End Class

J2.7.6.3 Data Not Provided

On the other hand, if the application does not have the report data readily available, you will need
to create a report definition that inherits from the TTXQueryReportDefinition class. This abstract
class inherits from the TTXReportDefinition class and overwrites some of its implementation in
order to retrieve data from the database as a part of the data initialization.

Classes derived from the TTXQueryReportDefinition class must implement a method called
GetQuery. It is in this method where the query to retrieve the data for the report will be defined.
Below is an example of a query that is built in the GetQuery method.

ProtectedOverridesFunctionGetQuery()As String
Dim Query As New StringBuilder
Query. Append (IIselect * ")

Query.Append(IIfrom participanttransferhistory ")

Query.Append (String. Format (
"where participantid = ,{o} ,", Me. mj?articipantID))

Return Query.ToString()
End Function

Covansys Corp. 71 SPIRIT

DTSD
Rev. 3.0

I0/31/06

When implementing the GetQuery method, be sure to use the StringBuilder class and the String
object's Format method, as shown above, rather than implicit string concatenation, as shown
below.

Protected Overrides Function GetQuery() As String
Dim Query As String
Query = "select * "
Query = Query & "from ParticipantTransferHistory II

Query = Query & "where ParticipantID = " & _
participantID

Return Query
End Function

12.7.7 Incorporating Reports Into Applications
Assuming that all the report definitions and mappings have been created for the reports you need
to use in your application, the process of creating reports is very simple. First, you'll create an
instance of your report definition. Second, you'll create an instance of output settings to use when
creating your report. Finally, you'll tell the report engine to create the report for you. Here is an
example of what the code would look like:

Dim Definition As

New ParticipantTransferHistoryReportDefinition
Dim Settings As New PDFOutputSettings("C:\report.pdf")
Dim Engine As New ReportEngine
Engine.CreateReport(Definition, Settings)

12.7.8 Special Notes
In working with the reporting component, there are some special notes that you must keep in
mind.

12.7.8.1 Data Access Component

At the time of this writing, there was not a standard data access component. Thus, the
TTXQueryReportDefinition class's base implementation of the InitializeData method is not fully
implemented. This component is expected to be completed soon and integrated into the reporting
component to complete the described functionaltiy.

12.7.8.2 Temporary Database Tables

Some reports that are to be converted have wrapper classes around them that insert data into a
temporary database table only to immediately retrieve it out again for the purpose of passing the
data to the report. (As an example, the ParticipantTransferHistory report was done this way.) An
implementation like this is no longer needed and should be avoided for the techniques described
in this document.

12.8 Dictionary Lists
Dictionary lists are static sets of domain values that can be used to populate drop-down lists and
perform code/descriptor translations. These lists are acquired using the shared GetList method of
the Dictionary class. The method returns an instance of a DictionaryListItems collection class.
This class can in turn be used as a data source for databound controls or for translation purposes
programmatically.

Covansys Corp. 72 SPIRIT

...

DTSD
Rev. 3.0

10/31/06

Dim oDictionaryListItems As New DictionaryListItems
oDictionaryListItems = Dictionary.GetList CDictionary.DictionaryCategoryEnum.dcProgram,
oDBHelper)
With Me.cboProgram

.DataSource = oDictionaryListItems

.ValueMember = "ExternalID"

.DisplayMember = "Description"
End With

Dictionary lists will be updated as required. The dictionary will be stored locally on the client
machine by serializing the dataset retrieved from the central data store. Each time the first WIC
application is started on the desktop the system will check for the most recent copy of the
dictionary, if this copy is newer than the local copy the data sych client will retrieve the most
recent dictionary and serialize it to the local hard disk via XML. This list loaded into memory at
the start of each application session.

12.9 Growth Grids and CDC Data
The growth grid functionality allows the user to view and compare measurement data against
percentile data provided by the CDC. The CDC data has been imported into the database and is
stored in the following tables. The original CDC data is provided in metric form (kilograms and
centimeters). During the import process a LENGTHWEIGHTAGE summary table was populated
using values from the CDC tables. While populating the summary table the metric values in the
CDC data were converted to imperial values (kilograms to inches, centimeters to pounds)

The LENGTHWEIGHT AGE table contains 17 chart types; one for each gender/chart type
combination (except the BMI and premi charts which use the BMIAGE and
PREMA TURELENGTHAGE and PREMA TUREWEIGHT AGE tables. Note that the premi data
did not come from the CDC. The list of types can be found in the
LENGTHWEIGHT AGETYPE table.

The data in the LENGTHWEIGHT AGE is used to populate the CDC percentile bands in each
grid.

For example, if you where trying to locate the percentile banding for a Boy between 0 to 36
months comparing Length to Age you would use TYPE =1 (BB36LengthAge) in the
LENGTHWEIGHTAGE. Each row would give you the length measurement for each percentile
so for TYPE = 1and AGEMONTHS = 1(a 1month old boy) a measurement of 19.98032 inches
would place the infant in the 5thpercentile. The remaining columns on that row designate each of
the percentile measurements for that type at that age.

The measurement data percentile is calculated and plotted on the fly. These calculations also vary
based on the comparison being performed and are not as easy to describe. Continuing the
example from above to calculate the percentage for a length to age comparison for a 1 month old
boy you would have to convert the length measurement to centimeters, lookup the appropriate
range of records in the LGTHAGE table (in this case SEX = 1and AGEMOS = 0.5 and 1.5,
perform interpolation between the 2 records on the L, M, and S values (since we did not find an
exact matching record - our age is 1month, the table has ages 0.5 and 1.5 months). So in the
formula below the 0.5 record would be the "low" values and the 1.5 record would be the "high"
values and Var is L, M, and S on the corresponding record. These L,M, and S values are then
used to calculate a Z score which in turn is converted into a percentage using the PfromZ function
in the Dist.dll com library provided by the CDC.

Covansys Corp. 73 SPIRIT

DTSD
Rev. 3.0

10/31/06

A class has been created that provides a simplified interface to these complex calculations. The
Wic.Charting.CdcStatisticsCalculator class will return a comprehensive set of statistical
information for each measurement provided.

12.10Consignment of System-wide Identifiers
The system maintains blocks of identifiers that can be used by specified machines while inserting
data into the database. Using these blocks ensures that machine operating in offline mode insert
records into their local database using system wide unique values. For example, the
StateWicldConsignment table has a row for each machine that has been allocated a block if ids:

Machineld
WebService

LastUsedld
300

In the example above the WebService machine has been allocated a block of 10,000 numbers
starting with I and ending with 10,000. To date 250 numbers have been used (mostI likely while
client applications were adding new applicants while operating in online mode)

Assume we have a laptop that is capable of operating offline and that his laptop checks out a
clinic. During the checkout process a new row is added to the table:

Notice that the block assigned to the machine (note that in production actual id would be the
laptops MAC Address) has been assigned a block of250 numbers that do not overlap with the
block allocated to the WebService. While offline the laptop is used to add 10 new members.
Upon checking in the clinic the table is updated as follows:

The system has a minimum threshold of numbers that must be in the open block. If the block falls
below that minimum threshold the system will allocate another block to ensure that the machine
has a sufficient number of ids. Let's assume that the laptop has checked data out several times
and the current table data is as follows:

Assuming that the minimum threshold for the laptop is 100. The next time the laptop checks out a
clinic the system will allocate a second block for the laptop as follows:

Covansys Corp. 74 SPIRIT

Machineld Startin12;ld LastUsedld Endimdd
WebService I 300 10000
LaptopOl 10001 0 10250

Machineld Startin12;ld LastUsedld Endin!:!Jd
WebService I 300 10000

LaptopOI 10001 10 10250

Machineld Startingld LastUsedld Endingld
WebService I 5500 10000
LaptopOI 10001 10160 10250

Machineld Startin12;ld LastUsedld Endin12;ld
WebService I 5500 10000

LaptopO I 10001 10160 10250

DTSD
Rev. 3.0

10/31/06

10251
10501

30
o

10500
10750

While offline the laptop will use the numbers in the current block first. At the point at which the
number 10250 is used, the laptop will switch the second block of numbers. Let's assume that the
laptop, while offline has added 100 new members. Upon checking in the clinic the table data
would be updated as follows:

How does it work? The software uses mapping classes to "map" the properties of a class to the
columns of a table. In that same mapping class a ValueGenerator is used to indicate the name of
the stored procedure to be used to retrieve the next id. Below is a code snippet from the
MemberMapping class. Notice the use of the ValueGenerator which references the GetNextWicId
stored procedure and returns the Statewicid output value. Also notice that the last argument of the
StateWicId property map refers to the ValueGenerator.

Public Class MemberMapping

Inherits MappingBase

Public Shared Function GetMappingsC) As FieldMappings

GetMappings = New FieldMappings

Dim StatewicIDValue As New CVNS.BPDS.ValueGenerator

StatewicIDValue.By. CVNS.BPDS.ValueGenerator.Method.StoredProcedure
StatewicIDValue.PUnction . "GetNextWicId"
StatewicIDValue.Parameters.Add("MachineId", "WehService")
StatewicIDValue.Parameters.Add("Statewicid", "")

StatewicIDValue.On . CVNS.BPDS.ValueGenerator.Mode.Insert

StatewicIDValue.OUtputPropertyName . "Statewicid"

With GetMappings
.TableName = "MEMBER"
.Add(New FieldMapping("StateWicId", "STATEWICID", True, "String", DataType.VarChar, 8,

StatewicIDValue»
.Add(New FieldMapping("MedicalHOmeId", "MEDICALHOMEID", False, "Int32", DataType.Numeric, 0,

FieldMapping.FieldTypeEnum.ftTranslateZeroToNull»
.Add(New FieldMapping("HouseholdId", "HOUSEHOLDID", False, "String", DataType.VarChar, 8»
.AddCNew FieldMappingC"AgencyId", "AGENCYID", False, "String", DataType.VarChar, 3»
.AddCNew FieldMappingC"ClinicId", "SERVICESITEID", False, "String", DataType.VarChar, 3»
.AddCNew FieldMapping C"ApplicationDate", "APPLICATIONDATE", False, "Date", DataType.DateTime, 0»
.Add(New FieldMapping("LastName", "LASTNAME " , False, "String", DataType.VarChar, 25»

.Add(New FieldMappingC"FirstName", "FIRSTNAME", False, "String", DataType.VarChar, 20»

.AddCNew FieldMappingC"MiddleInitial", "MIDDLEINITIAL", False, "String", DataType.VarChar, 1»

End With
End Function

End Class

The stored procedure in turn retrieves the next available number from the appropriate
consignment table and increments the last used value accordingly:

CREATE PROCEDURE [dboJ.(GetNextWicId]
@MachineId varchar(lOO) ,
@StateWicId varchar(8) output

AS
BEGIN

DECLARE @LastUsedId int, @StartingId int

Covansys Corp. 75 SPIRIT

Machineld Startinf!;ld LastUsedld Endinf!;ld
WebService I 5500 10000
LaptopOI 10001 10250 10250
Laptop02 10251 30 10500
LaptopOI 10501 10510 10750

DTSD
Rev. 3.0

10/31/06

DECLARE
DECLARE
SET @Id
set SET

@EndingId int, @NewStartingId int, @NewEndingId int, @MaxEndingId
@Id int
= -1
TRANSACTION ISOLATION LEVEL READ COMMITTED

int, @NumOpenBlocks int

Get the block that contains the current range of reserved ids for the specified machine
We constrain the query by 'LastUsedId < EndingId' to ensure that we do not retrieve a block in

in which the range is .used up..

We issue the subselect to ensure that we only get the current block (i.e. the record having the
lowest range of ids).

since it is possible to have up to 2 records returned from the query. This would happen if the
web service reserved

-- another block was reserved because the number of available ids in the current block fell below
the minimum

-- threshold: (EndingId - LastUsedId) < MinThreshold.

select @StartingId = StartingId, @LastUsedId = LastUsedId, @EndingId = EndingId from
StateWicIdConsignment (updlock) where StartingId = (select min(StartingId) from StateWicIdConsignment
where MachineId = @MachineId and (LastUsedId < EndingId))

increment the last used

IF @LastUsedId = 0

-- Block has not been used yet
SET @Id = @StartingId

ELSE
SET @Id = @LastUsedId + 1

update StateWicIdConsignment set LastUsedId
@StartingId

@Id,modifydttm=GetDate() where StartingId

see we need to add a new block
IF @MachineId = 'WebService'

-- we only allocate new blocks on the fly for the web service, blocks for other machines are

allocated while checking out data via a data sync software
BEGIN

IF @EndingId - @LastUsedId < 500
BEGIN

-- get a count of available blocks for this machine id

select @NumOpenBlocks = count(") from StateWicIdConsignment where MachineId = @MachineId
and (LastUsedId < EndingId)

IF @NumOpenBlocks =1
BEGIN

-- we only have one available block for the web service machine id and we are past
the threshold of minimum availble ids so add a new block

select @MaxEndingId = max(EndingId) from StateWicIdConsignment
SET @NewStartingId = @MaxEndingId + 1

SET @NewEndingId = @NewStartingId + 10000
insert into StateWicIdConsignment (MachineId, StartingId, LastUsedId, EndingId)

values (@MachineId, @NewStartingId, 0, @NewEndingId)
END

END
END

-- copy the int into a varchar so the SEt will concat strings insted of implicitly

-- converting the varchar of zeros to an int and add the values.
DECLARE @IdAsString varchar(8)
DECLARE @val1 varchar(8)

SET @IdAsString = '00000000'
SET @vall = @Id

SET @IdAsString = REPLACE(SPACE(8-LEN(@Id»,' ','0') + @vall
Set @StateWicId = @IdAsString
RETURN 0

END

GO

Notice that the stored procedure only allocates a new block "on-the-fly" for the WebService
Machineld. This is because this is the only machine that interacts directly with the centralized
database which is where all the consignment blocks are maintained. Other machines must create
blocks while checking out clinic data in order to ensure that each block of numbers is unique.

While the new member record is being inserted into the database by the Data Access Layer (Le.
the CVNS.BPDS.DataAccess.SqISeverHelper class) the helper invokes a call to the stroed
procedure to retrieve the next id which is then included in the insert statement issued to the
database.

Covansys Corp. 76 SPIRIT

DTSD
Rev. 3.0

10/31/06

There are a number of consignment blocks that are used throughout the system they can easily be
identified by looking for tablenames that end with "Consignment" there corresponding stored
procedures cab be identified by looking for stored procedures that start with "GetNext".

Mapping classes using these consignment blocks can be identified by scanning the code base for
classes ending with "Mapping" that use a ValueGenerator.

12.11 CVNS.BPDS.Security. CryptographicProvider
Provides a simplified interface for encryption/decryption of a specified value as well as the ability
to hash a value. The class provides methods to generate a non-weak random key/vector pair
which can be used to encrypt and decrypt values. Note the consumer of this class must retain the
key/value pair in a secured environment since the same pair is needed to decrypt and encrypted
value. The class uses the TripleDESCryptoServiceProvider class from the .NET framework to
which implements the Data Encryption Standard (DES) algorithm.

Encrypting and Decrypting Sensitive Information
In order to ensure that no one software component can independently encrypt or decrypt
sensitive information the functionality and key information has been distributed across
different components of the software.

As mentioned above, a Triple DES algorithm is used to for encryption. The key and vector
values used during encryption are stored in the wic.dat file also located in the same folder as
the software assemblies. The wic.dat file contains a lengthy string of random characters.
Embedded within this string are the key and vector values. The key is scattered within the file
in 3 parts while the vector is scattered in 2 parts.

The only software component in the system that can reassemble the key and vector values is
the GetPartsO method of the Wic.Common.Utilities class. This class takes 2 string parameters
by reference and updates the parameters with the key and vector values. The method itself is
obfuscated in that there is no mention of any security context within the methods source code.

Software components needing to encrypt or decrypt values must implement code similar to
the following:

Dim pI As String
Dim p2 As String
Dim cp As New CVNS.BPDS.Security.CryptographicProvider
Wic.Common.Utilities.GetParts(pl, p2)

EncryptedValue cp.Encrypt(Value, pI, p2)

DecryptedValue = cp.Decrypt(EncryptedValue, pI, p2)

For clarity sake the key and vector values being used are included bloew:

Key: otw9DHk3SVdwtS69TxYsaK/glHjIf91/
IV: DiycThta3IO=

Covansys Corp. 77 SPIRIT

.-..........

DTSD
Rev. 3.0

10/31/06

12.12Central Data Store
The Central Data Store is the primary data source and is a single MS SQL Server database used to
store all data.
The Central Data Store is a MS SQL Server database used as the interactive data source for all the
WIC applications. (Note the some applications can operate in a disconnected mode. In this case
the Central Data Store is replaced with the Local Data Store.

12. 13Local Data Store
The Local Data Store is a MS SQL Server database used as an interactive data source for the
applications capable of operating in a disconnected mode.

12.14Service Agents
Service Agents are used by application capable of running in a disconnected mode. These agents
route SOA style requests to either the Central Data Store via the Web Services or to the Local
Data Store via the local copy of the Business Service Layer software components. The
Session Settings file is used by the service agent components to determine the mode of operation
and location of the Web Services.

12.15Permission Testing
Permissions are expressed as access levels granted to a system features. There are 3 access levels;
None, View, and Full Control. Each is mutually exclusive of the other.

Below are 3 examples of how to perform a permission test. In the first 2 examples we are
performing an implicit test where as in the second example we are performing an explicit test.
Explicit tests are preferred unless logic and/or specifications dictate otherwise.

Example 1
If oUser.HasPermissionGreaterThan(pSearchStatewide, alNone) Then

, if the current user's permission level for the Statewide search feature

, is greater then 'None' then enable the search option
Me.rdoStatewide.Enabled = True

Else
Me.rdoStatewide.Enabled = False

End If

&k2
If oUser.HasPermission(pSearchStatewide, alNone) Then

, if the current user's permission level for the Statewide search feature
, is 'None' then disable the search option
Me.rdoStatewide.Enabled = False

Else
Me.rdoStatewide.Enabled = True

End If

Example 3
If oUser.HasPermission(pSearchStatewide, alView) Or_

oUser.HasPermission(pSearchStatewide, alFullControl) Then
, if the current user's permission level for the Statewide search feature

, is either 'View' or 'Full Control' then enable the search option
Me.rdoStatewide.Enabled = True

Else
Me.rdoStatewide.Enabled = False

End If

Permission controls within an interface are stipulated in the conceptual designs (DFDDs) and
supporting detailed design documents.

Covansys Corp. 78 SPIRIT

DTSD
Rev. 3.0

10/31/06

12.161mplementing Business Rules Checks
Business rules will be implemented as a class exposing a number of methods that encapsulate the
records found in the STATEBUSINESSRULES database table. These class methods are provided
in order to strongly type the rule evaluation thereby relieving the developer from having to use
literal values during the rules checking. The following examples illustrate the usage of the
BusinessRules class.

Example J - Getting values from the rules
Me.lbICounty.Text= oBusinessRules.GetCountyLabel(). Returns County or Quadrant

Example 2 - Testing a Boolean condition
If oBusinessRules.ShowTermInfo() Then

Me.lbITerminationDateText.Visible = True
Me.lbITerminationDateValue.Visible =True
Me.lbITermReasonText.Visible = True
Me.lbITermReasonValue.Visible = True

Else
Me.lbITerminationDateText.Visible = False
Me.lbITerminationDateValue.Visible = False
Me.lbITermReasonText.Visible = False
Me.lbITermReasonValue.Visible = False

End If

Example 3 - Testing a Boolean condition using an enumeration
If oBusinessRules.AssignRiskFactor(rf135) Then

, add the risk factor if the conditions are met.
End If

12. 17Exception Handling
Methods that are capable of throwing exceptions will be wrapped in a try...catch construct. All
exception caught at the VI layer will be handled by the default handler provided by
CVNS.BPDS.Windows.Forms.Form..

Try
_oPD. Verify ()
Dim s As String
s = _oPSA.SaveDemographics(_oPD)
If s.Length > 0 Then

, server side error occured,diaplaythe message
MsgBox(s)

End If

Catch ex As Exception
, use default exception handler
Me.HandleException(ex, me. text)

End Try

12.18Summary Lists
Applications have occasion to retrieve and display lists of information. Normally speaking the
information being displayed is either a subset or summarization of a significantly larger set of
data. Consider a list of names of participants where the first and last name being displayed are
only 2 attributes of 20 that are associated with the participant. When retrieving this list we only
want to return the information needed to display and uniquely identify the participant. For
arguments sake let's say that would be Participant Id, First name, and Last name. There are 2
techniques that can be used to implement a solution for this requirement using our data access
framework.

Covansys Corp. 79 SPIRIT

. .. .

DTSD
Rev. 3.0

I0/31/06

The first technique involves creating a specialized set of classes to represent the list item and
database mapping, along with a strongly typed collection to hold these objects. The specialized
class will only support the properties ParticipantId, Firstname and Lastname. We would name this
class, (derived fTomBusinessObject), ParticipantListItem so as not to be confused with the fully
attributized Paricipant class. The corresponding mapping, (derived fTomMappingBase), would
then be named ParticipantListItemMapping and the collection, (derived from
BusinessObjectCollection) would be named ParticipantListItems.

The second technique involves creating a fully attributized Participant class along with its
corresponding ParticipantMapping and Participants collection. The developer would provided
code that would remove the unwanted FieldMapping items fTomthe Participant objects
FieldMappings property at runtime thereby reducing the map to contain only the 3 field maps for
ParticipantId, Firstname, and Lastname.

If the list must display data from more than one data source, (i.e. joining 2 or more database
tables), as is the case when translating codes to meaningful descriptions (i.e. M to male and F to
female), then a database view should be created that provides the aggregated data. In this
situation, using the first technique is the preferred choice.

12.19Building IIPersistable" Objects
In the section above we refer to the fully attributized Participant class, also derived from
BusinessObject, the FieldMappings for this class are tied to a table rather than a view, this allows
the class to be persisted to the data source via a DBHelper object. (For details regarding database
access please refer to the Data Acquisition section of this document.)To follow our earlier list
items scenario, once a list item is selected the fully attributized object is retrieved using the
unique identifier for the item, in this case the participant id. This class provides the coded values
or enumerated lists as properties when applicable (i.e. Gender as M or F). Consumers of these
objects then translate codes to descriptions by retrieving domain lists and looking up and
translating values to descriptions. Loading, Saving, and Deleting these objects fTomthe
persistence layer then becomes as simple as passing the object to the appropriate method of a
DBHelper object.

12.20Using Duncan to Generate IIPersistable" Objects
A Code generation tool has been developed by the BPDS Architecture team that facilitates the
construction of objects that map to database tables and views. The .NET Add-in tool, called
Duncan, allows the developer to right-click on a table or view in the .NET IDE Server Explorer
and select the Create Table Mapping menu item from the popup menu. Selecting the menu item
displays the Mapping window. The developer can then change the mapping information and
target class names if needed. Pressing the Ok button dismisses the window and creates the target
classes in the selected project in the .NET IDE Solution Explorer.

12.21 Business Object Validation and Broken Rules
Most classes have one or more "edits" that need to be passed before the data can be saved or is
considered valid. Classes derived from BusinessObject inherit a VerifyO method that can be
implemented to include these edits as well as a BrokenRules collection that can be used to record

Covansys Corp. 80 SPIRIT

DTSD
Rev. 3.0

10/31/06

offensive conditions. For example, assume that Lastname is a required property of a Participant
object. The verify method of the class would implement a test to ensure that the length of the
Lastname property is greater than 0, if not, the method would add a broken rule the object's
BrokenRules collection and then throw an exception of type BusinessObjectException. The
consumer of the object would then catch the exception, interrogate the broken rules and take
appropriate action. Note that he DBHelper's save method uses reflection to invoke the passed
object's VerifyO method prior to attempting to save the object to the persistence layer.
Consumers can also programmatically invoke the object's VerifyO method. This allows the
interface layer to invoke the "edits" ITomthe objects in the business service layer. This concept
can be applied to workflow classes that may verify relational "edits" across constituent objects.

12.22Using Database Transactions
A logical transaction should be used when persisting data that spans more one object. In the
example below, a transaction is used to group the persistence of a Member and CertContact
object. Notice the use of the try... catch in relation to the commit and rollback.

Try
, Load the atomic objects to be updated
Member.StateWicId = Demographics.StateWidId
DBHelper. Load (Member)
CertContact.StateWicId = Demographics.StateWidId

DBHelper. Load (CertContact)
, update the properties accordingly
Member.FirstName = Demographics.Person.FirstName
CertContact.CertStartDate = Demographics.CertStartDate

Catch boe As BusinessObjectException
Throw boe

Catch ex As Exception
Throw ex

End Try

, update the member and certcontact info as a single transaction
Try

With DBHelper
. BeginTrans ()

.Save (Member)

.Save (CertContact)

.CommitTrans ()
End With

Catch boe As BusinessObjectException
Throw boe

Catch ex As Exception
DBHelper.RollbackTrans()

Finally
DBHelper.Dispose()

End Try

12. 23 Resources

Commonly used strings and images will be placed in a single resource file. Strings should be
stored in the resource file with the appropriate tokens embedded in the string: "% 1 is a required
value." These images and resources are to be assigned a unique id and accessed via an global
object that provides an interface for retrieving said items. (see the MSDN article
http://msdn.microsoft.com/l ibrarv 1defau It.asp?url=/l ibrarv 1en-
us/cptutorials/html/image resources.asp for details regarding creating a resource file.) used by all
the components.

Covansys Corp. 81 SPIRIT

. --- --- ...-

DTSD
Rev. 3.0

10/31/06

12.24Messages
Reusable Messages will be stored in a common resource file. Messages will be displayed using
the windows msgboxO routine.

12.25Unit Testing
Unit testing is a critical piece of the software construction process. Complete and thorough unit
testing reduces the number of defects encountered during system test. In order to ensure that
thorough unit testing will be performed, developers will be required to submit unit test plans prior
to constructing the software. These plans must be reviewed and approved before construction
begins. Unit testing will be implemented as a series of NUn it test jigs. Please refer to the
document entitled NUnit Test Jig Primer for a detailed description of how to construct these test
jigs.

These unit test jigs will be incorporated into the master build process and will be run after a
successful build.

12.26Coding Guidelines
The Spirit project will use the "VB.Net Guidelines" outlined by the BPDS Architecture team as
of Jan 1,2005. A copy of these guidelines has been copied into the "Development Processes and
Procedures" folder the Spirit Repository. In addition, the addenda document "Spirit Coding
Guidelines" has been drafted to stipulate the project specific modifications that will be made to
the aforementioned guidelines published by the BPDS Architecture team to add additional
readability and clarity to the code base.

12.27Version Control
The following software artifacts will not be versioned in the repository

. The project's bin folder

. The project's obj folder

. The project's .vbproj.user file

When adding a new project to the repository the above items are to be excluded. Note that the
_svn folder is used by the version control system and should not be tampered with.

12.28Code Documentation

12.28.1 Generating External Documentation
External Documentation (Programmer reference material) will be preceded by 3 ticks ("') and
commented with XML tags. This documentation will be provided to developer's utilizing the
assembly. The xml documentation will be generated using the VB.Doc. The reference
documentation will complied using NDoc. Both the XML and the complied reference material

Covansys Corp. 82 SPIRIT

DTSD
Rev. 3.0

10/31/06

will be built as part of the master build process and will be placed in a common folder within the
appropriate project.

The xml tags that can be used can be found in NDoc users guide located at
http://ndoc.sourceforge.net/usersguide.html. These tags are based on (and should be the same as)
the tags supported in Microsoft's C# language. The following tag usage is in effect for all
publicly accessible types and members.

R Required
R* Required if applicable
o Optional

<remarks>

This tag is the primary description used by IntelliSense and the Object Browser in
VisualStudio, and most other development tools
This tag is used to add additional information about a type or member,
supplementing the information specified with <summarv>.
Describes a parameter of a method.
Describes an event raised by a method.
This tag describes the return value of a method.
Describes overloaded feature

Use to provide the descriptive text associated with a usage exam
Used wthin an <example> tag to provide a code snippet.
Used to sDecifvlinks to other classes or members.

<summary>

<param>
<event>
<returns>
<overloads>
<example>
<code>
<seealso>

12.28.2 Internal Documentation
Internal documentation will be provided as tree form comments preceded by a single tick (').
These comments should used liberally to explain and/or document the related code for future
reference by developer's enhancing or maintaining the code. The purpose of these comments is to
provide insight into the reasons, relationships, or rules that are being implemented that may not
be apparent by reading the code.

13 Disaster Recovery Provisions
The Disaster Recovery Plan is a SPIRIT and CNI deliverable. The outline of the plan for the data
center which will service the SPIRIT system has been attached as part of this DTSD. For security
purposes the main body of the Disaster Recovery Plan and COOP have been excluded for general

Covansys Corp. 83 SPIRIT

Tag Class Property Method Event
<summary> R R R R
<remarks> 0 0 0 0
<param> R*
<event> R*
<returns> R
<overloads> 0 0 0
<example> 0 0 0 0
<code> 0 0 0 0
<seealso> 0 0 0 0

DTSD
Rev. 3.0

10/31/06

review as a component of this DTSD. A copy ofthis plan resides in the Chickasaw Nation Office
of the CIO and in the Chickasaw Nation (CNI) Data Center. The detailed elements of this plan
which pertain to the SPIRIT implementation can be reviewed by members of the SPIRIT
consortium or approved third-parties upon request by contacting the CNI Director of Information
Technology at 580-272-5000.

Covansys Corp. 84 SPIRIT

DTSD
Rev. 3.0

10/31/06

14 Appendix A
The following is a list of tables that contain reference data and are potential candidatesto be
included in the Reference Data Synchronization process.

Appointments
APPOINTMENTRESOURCE
APPOINTMENTTYPE
BUSINESSDA Y
BUSINESSHOUR
CLASS SCHEDULE
CLASSTYPE
DEF AUL TDURA TION
HOLIDA Y
RESOURCESCHEDULE

Food Prescriptions
BASEFOODCATEGORY
BASEFOODCOMBINA TIONMAXIMUM
FOOD ITEM
FOODDISTRIBUTIONITEM
FOOD ITEM FORMULA
FOODITEMQTY
FOODPACKAGE
FOODPACKAGEBASEFOODCAT
FOODP ACKAGEITEM
MILKSUBSTITUTION

Growth Grid Reference Data
BMI
HEAD
HTAGE
INTRAUTERINE WEIGHT
LENGTHWEIGHT AGE
LENGTHWEIGHTTYPE
LGTHAGE
PREMA TURELENGTHWEIGHT AGE
PRENA TAL WEIGHTGAIN
PREPREGWEIGHTHEIGHT
WEIGHTLENGTH
WTAGE
WTHEIGHT
WTLENGTH

General
AGECATAGORY
AGENCY
ANEMIACUTOFF
COUNTY
COUNTYCITYBYZIP

Covansys Corp. 85 SPIRIT

DTSD
Rev. 3.0

10/31/06

DIAGECA TEGORY
DIFOODCA TEGORY
DIRECOMMENDA TION
FIXEDLOCA TION
HEAL THF ACILITY
IMMUNIZA TIONSERIES
INCOMEELIGIBILITY AMOUNT
INV ALIDBFCOMBO
ITEMPURCHASELINKAGE
ITEMPURCHASESIZE
LAZERLABELS
LCLOTHPROGRAM
LEGALMUNICIP ALITY
LOCALMUNICIP ALITY
LOCALUSECAPTION
LOCALUSECODE
LOCATION
MEDICALHOME
OUTREACHAGENCY
PRIORITYPERWICST ATUS
RACEETHNICITY
REF AGENCYCLINIC
REFAGENCYLOCAL
REF AGENCY STATE
REFDICTIONARYCA TEGORY
REFERENCEDICTIONARY
RISKF ACTOR
RISKF ACTORREFERENCE
SERVICESITE
SMOKINGAMOUNT
ST ATEBUSINESSRULES
STATEUSECAPTION
ST ATEUSECODE
VACCINE
WICST ATUS
WLAGECATEGORY
WLELIGIBIL TYCRITERIA
WLELIGIBILITYPROFILE

Covansys Corp. 86 SPIRIT

